Nuprl Lemma : spread-wf

[A:Type]. ∀[B:A ⟶ Type]. ∀[C:a:A ⟶ b:B[a] ⟶ Type]. ∀[p:a:A × B[a]]. ∀[F:a:A ⟶ b:B[a] ⟶ C[a;b]].
  (let x,y 
   in F[x;y] ∈ C[fst(p);snd(p)])


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] so_apply: x[s1;s2] so_apply: x[s] pi1: fst(t) pi2: snd(t) member: t ∈ T function: x:A ⟶ B[x] spread: spread def product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_apply: x[s1;s2] subtype_rel: A ⊆B pi1: fst(t) pi2: snd(t) so_apply: x[s]
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut spreadEquality hypothesisEquality applyEquality hypothesis lambdaEquality sqequalRule sqequalHypSubstitution axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality isectElimination thin because_Cache productEquality cumulativity universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[C:a:A  {}\mrightarrow{}  b:B[a]  {}\mrightarrow{}  Type].  \mforall{}[p:a:A  \mtimes{}  B[a]].
\mforall{}[F:a:A  {}\mrightarrow{}  b:B[a]  {}\mrightarrow{}  C[a;b]].
    (let  x,y  =  p 
      in  F[x;y]  \mmember{}  C[fst(p);snd(p)])



Date html generated: 2016_05_15-PM-03_21_52
Last ObjectModification: 2015_12_27-PM-01_04_32

Theory : general


Home Index