Nuprl Lemma : strict-fun-connected_irreflexivity

[T:Type]. ∀[f:T ⟶ T]. ∀[x:T].  False supposing f+(x)


Proof




Definitions occuring in Statement :  strict-fun-connected: f+(x) uimplies: supposing a uall: [x:A]. B[x] false: False function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  strict-fun-connected: f+(x) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a false: False and: P ∧ Q not: ¬A implies:  Q prop:
Lemmas referenced :  and_wf not_wf equal_wf fun-connected_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin hypothesis independent_functionElimination hypothesisEquality voidElimination because_Cache lemma_by_obid isectElimination isect_memberEquality equalityTransitivity equalitySymmetry functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  T].  \mforall{}[x:T].    False  supposing  x  =  f+(x)



Date html generated: 2016_05_15-PM-04_59_21
Last ObjectModification: 2015_12_27-PM-02_29_33

Theory : general


Home Index