Nuprl Lemma : strict-fun-connected_irreflexivity
∀[T:Type]. ∀[f:T ⟶ T]. ∀[x:T].  False supposing x = f+(x)
Proof
Definitions occuring in Statement : 
strict-fun-connected: y = f+(x)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
false: False
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
strict-fun-connected: y = f+(x)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
false: False
, 
and: P ∧ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
and_wf, 
not_wf, 
equal_wf, 
fun-connected_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis, 
independent_functionElimination, 
hypothesisEquality, 
voidElimination, 
because_Cache, 
lemma_by_obid, 
isectElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  T].  \mforall{}[x:T].    False  supposing  x  =  f+(x)
Date html generated:
2016_05_15-PM-04_59_21
Last ObjectModification:
2015_12_27-PM-02_29_33
Theory : general
Home
Index