Nuprl Lemma : sub-equality
∀[T:Type]. ∀[P:T ⟶ ℙ]. ∀[i,u:T].  (i = u ∈ {j:T| {j:T| P j} } ) supposing ((P u) and (i = u ∈ T))
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
lemma_by_obid, 
functionEquality, 
cumulativity, 
universeEquality, 
dependent_set_memberEquality, 
setEquality, 
lambdaEquality
Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[i,u:T].    (i  =  u)  supposing  ((P  u)  and  (i  =  u))
Date html generated:
2016_05_15-PM-03_38_03
Last ObjectModification:
2015_12_27-PM-01_16_12
Theory : general
Home
Index