Nuprl Lemma : subtype_neg_polymorphism_test

((⋂T:Type. (T ⟶ T ⟶ ℙ)) ⊆(Top ⟶ Top ⟶ ℙ)) ∧ ((Top ⟶ Top ⟶ ℙ) ⊆(⋂T:Type. (T ⟶ T ⟶ ℙ)))


Proof




Definitions occuring in Statement :  subtype_rel: A ⊆B top: Top prop: and: P ∧ Q isect: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  and: P ∧ Q subtype_rel: A ⊆B member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a top: Top all: x:A. B[x]
Lemmas referenced :  top_wf subtype_rel_dep_function subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation lambdaEquality isectElimination cut lemma_by_obid hypothesis equalityTransitivity equalitySymmetry isectEquality universeEquality functionEquality cumulativity hypothesisEquality isect_memberEquality applyEquality thin instantiate sqequalHypSubstitution sqequalRule independent_isectElimination voidElimination voidEquality lambdaFormation because_Cache

Latex:
((\mcap{}T:Type.  (T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}))  \msubseteq{}r  (Top  {}\mrightarrow{}  Top  {}\mrightarrow{}  \mBbbP{}))  \mwedge{}  ((Top  {}\mrightarrow{}  Top  {}\mrightarrow{}  \mBbbP{})  \msubseteq{}r  (\mcap{}T:Type.  (T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{})))



Date html generated: 2016_05_15-PM-07_48_57
Last ObjectModification: 2015_12_27-AM-11_07_34

Theory : general


Home Index