Nuprl Lemma : subtype_neg_polymorphism_test
((⋂T:Type. (T ⟶ T ⟶ ℙ)) ⊆r (Top ⟶ Top ⟶ ℙ)) ∧ ((Top ⟶ Top ⟶ ℙ) ⊆r (⋂T:Type. (T ⟶ T ⟶ ℙ)))
Proof
Definitions occuring in Statement : 
subtype_rel: A ⊆r B
, 
top: Top
, 
prop: ℙ
, 
and: P ∧ Q
, 
isect: ⋂x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
top: Top
, 
all: ∀x:A. B[x]
Lemmas referenced : 
top_wf, 
subtype_rel_dep_function, 
subtype_rel_self
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
independent_pairFormation, 
lambdaEquality, 
isectElimination, 
cut, 
lemma_by_obid, 
hypothesis, 
equalityTransitivity, 
equalitySymmetry, 
isectEquality, 
universeEquality, 
functionEquality, 
cumulativity, 
hypothesisEquality, 
isect_memberEquality, 
applyEquality, 
thin, 
instantiate, 
sqequalHypSubstitution, 
sqequalRule, 
independent_isectElimination, 
voidElimination, 
voidEquality, 
lambdaFormation, 
because_Cache
Latex:
((\mcap{}T:Type.  (T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}))  \msubseteq{}r  (Top  {}\mrightarrow{}  Top  {}\mrightarrow{}  \mBbbP{}))  \mwedge{}  ((Top  {}\mrightarrow{}  Top  {}\mrightarrow{}  \mBbbP{})  \msubseteq{}r  (\mcap{}T:Type.  (T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{})))
Date html generated:
2016_05_15-PM-07_48_57
Last ObjectModification:
2015_12_27-AM-11_07_34
Theory : general
Home
Index