Nuprl Lemma : test-evd3
∀[D:ℙ]. ∀[P,Q:D ⟶ ℙ]. ((∀x:D. ((P x)
⇒ (Q x)))
⇒ (∃x:D. (P x))
⇒ (∃x:D. (Q x)))
Proof
Definitions occuring in Statement :
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
implies: P
⇒ Q
,
apply: f a
,
function: x:A ⟶ B[x]
Definitions unfolded in proof :
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
implies: P
⇒ Q
,
exists: ∃x:A. B[x]
,
all: ∀x:A. B[x]
Lemmas referenced :
exists_wf,
all_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
hypothesisEquality,
applyEquality,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
sqequalRule,
lambdaEquality,
hypothesis,
functionEquality,
isect_memberFormation,
lambdaFormation,
rename,
productElimination,
dependent_pairFormation,
dependent_functionElimination,
independent_functionElimination,
because_Cache,
cumulativity,
universeEquality
Latex:
\mforall{}[D:\mBbbP{}]. \mforall{}[P,Q:D {}\mrightarrow{} \mBbbP{}]. ((\mforall{}x:D. ((P x) {}\mRightarrow{} (Q x))) {}\mRightarrow{} (\mexists{}x:D. (P x)) {}\mRightarrow{} (\mexists{}x:D. (Q x)))
Date html generated:
2016_05_15-PM-03_18_52
Last ObjectModification:
2015_12_27-PM-01_03_22
Theory : general
Home
Index