Nuprl Lemma : test4

p:ℕ × ℕ × 𝔹. ∀bs:ℕ List.  (let x,y,ok in if ok then else fi  ∈ ℤ)


Proof




Definitions occuring in Statement :  list: List nat: ifthenelse: if then else fi  bool: 𝔹 spreadn: spread3 all: x:A. B[x] member: t ∈ T product: x:A × B[x] subtract: m add: m int:
Definitions unfolded in proof :  member: t ∈ T nat: subtype_rel: A ⊆B uall: [x:A]. B[x] all: x:A. B[x] spreadn: spread3 so_apply: x[s1;s2;s3] so_lambda: so_lambda(x,y,z.t[x; y; z])
Lemmas referenced :  nat_wf bool_wf list_wf istype-universe ifthenelse_wf subtract_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid hypothesis intEquality because_Cache addEquality sqequalHypSubstitution setElimination thin rename hypothesisEquality lambdaEquality_alt inhabitedIsType universeIsType isectElimination productIsType lambdaFormation_alt isect_memberFormation_alt productElimination sqequalRule applyEquality functionIsType universeEquality

Latex:
\mforall{}p:\mBbbN{}  \mtimes{}  \mBbbN{}  \mtimes{}  \mBbbB{}.  \mforall{}bs:\mBbbN{}  List.    (let  x,y,ok  =  p  in  if  ok  then  x  +  y  else  x  -  y  fi    \mmember{}  \mBbbZ{})



Date html generated: 2019_10_15-AM-11_36_15
Last ObjectModification: 2018_10_09-PM-00_01_31

Theory : general


Home Index