Nuprl Lemma : test7
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[f:a:A ⟶ B[a]]. ∀[x:A].  (f x ∈ B[x])
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
Lemmas referenced : 
istype-universe
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
functionIsType, 
universeIsType, 
applyEquality, 
inhabitedIsType, 
because_Cache, 
universeEquality, 
isect_memberFormation_alt, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality_alt, 
lambdaEquality_alt
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[f:a:A  {}\mrightarrow{}  B[a]].  \mforall{}[x:A].    (f  x  \mmember{}  B[x])
Date html generated:
2019_10_15-AM-11_36_48
Last ObjectModification:
2018_10_09-PM-00_01_06
Theory : general
Home
Index