Nuprl Lemma : test7

[A:Type]. ∀[B:A ⟶ Type]. ∀[f:a:A ⟶ B[a]]. ∀[x:A].  (f x ∈ B[x])


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_apply: x[s] so_lambda: λ2x.t[x]
Lemmas referenced :  istype-universe
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesisEquality hypothesis functionIsType universeIsType applyEquality inhabitedIsType because_Cache universeEquality isect_memberFormation_alt sqequalRule axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality_alt lambdaEquality_alt

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[f:a:A  {}\mrightarrow{}  B[a]].  \mforall{}[x:A].    (f  x  \mmember{}  B[x])



Date html generated: 2019_10_15-AM-11_36_48
Last ObjectModification: 2018_10_09-PM-00_01_06

Theory : general


Home Index