Nuprl Lemma : testsq

λx.(x 2) ~ λx.(x 1)


Proof




Definitions occuring in Statement :  lambda: λx.A[x] add: m natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: false: False sq_type: SQType(T) implies:  Q guard: {T}
Lemmas referenced :  int_formula_prop_wf int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermAdd_wf itermConstant_wf intformeq_wf intformnot_wf satisfiable-full-omega-tt decidable__equal_int int_subtype_base subtype_base_sq
Rules used in proof :  sqequalRule sqequalReflexivity cut thin instantiate lemma_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep isectElimination because_Cache independent_isectElimination hypothesis dependent_functionElimination unionElimination natural_numberEquality dependent_pairFormation lambdaEquality intEquality isect_memberEquality voidElimination voidEquality hypothesisEquality computeAll equalityTransitivity equalitySymmetry independent_functionElimination

Latex:
\mlambda{}x.(x  +  2)  \msim{}  \mlambda{}x.(x  +  1  +  1)



Date html generated: 2016_05_15-PM-07_41_46
Last ObjectModification: 2016_01_16-AM-09_32_44

Theory : general


Home Index