Nuprl Lemma : testsq
λx.(x + 2) ~ λx.(x + 1 + 1)
Proof
Definitions occuring in Statement : 
lambda: λx.A[x]
, 
add: n + m
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
false: False
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
Lemmas referenced : 
int_formula_prop_wf, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
itermAdd_wf, 
itermConstant_wf, 
intformeq_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
decidable__equal_int, 
int_subtype_base, 
subtype_base_sq
Rules used in proof : 
sqequalRule, 
sqequalReflexivity, 
cut, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
dependent_functionElimination, 
unionElimination, 
natural_numberEquality, 
dependent_pairFormation, 
lambdaEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesisEquality, 
computeAll, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination
Latex:
\mlambda{}x.(x  +  2)  \msim{}  \mlambda{}x.(x  +  1  +  1)
Date html generated:
2016_05_15-PM-07_41_46
Last ObjectModification:
2016_01_16-AM-09_32_44
Theory : general
Home
Index