Nuprl Lemma : ts-reachable_wf

[ts:transition-system{i:l}]. (ts-reachable(ts) ∈ {T:Type| T ⊆ts-type(ts)} )


Proof




Definitions occuring in Statement :  ts-reachable: ts-reachable(ts) ts-type: ts-type(ts) transition-system: transition-system{i:l} subtype_rel: A ⊆B uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  universe: Type
Definitions unfolded in proof :  ts-reachable: ts-reachable(ts) ts-type: ts-type(ts) transition-system: transition-system{i:l} ts-init: ts-init(ts) ts-rel: ts-rel(ts) uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B prop: infix_ap: y
Lemmas referenced :  subtype_rel_wf pi1_wf_top rel_star_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaEquality setElimination thin rename hypothesisEquality setEquality because_Cache dependent_set_memberEquality hypothesis lemma_by_obid sqequalHypSubstitution isectElimination instantiate universeEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry productEquality cumulativity functionEquality

Latex:
\mforall{}[ts:transition-system\{i:l\}].  (ts-reachable(ts)  \mmember{}  \{T:Type|  T  \msubseteq{}r  ts-type(ts)\}  )



Date html generated: 2016_05_15-PM-05_39_22
Last ObjectModification: 2015_12_27-PM-02_05_57

Theory : general


Home Index