Nuprl Lemma : void-list-equality2

[x,y:Void List]. ∀[T:Type].  (x y ∈ (T List))


Proof




Definitions occuring in Statement :  list: List uall: [x:A]. B[x] void: Void universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a
Lemmas referenced :  list_wf void-list-equality subtype_rel_list
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis universeEquality sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality axiomEquality because_Cache lemma_by_obid voidEquality applyEquality independent_isectElimination lambdaEquality voidElimination

Latex:
\mforall{}[x,y:Void  List].  \mforall{}[T:Type].    (x  =  y)



Date html generated: 2016_05_15-PM-04_33_48
Last ObjectModification: 2015_12_27-PM-02_46_45

Theory : general


Home Index