Nuprl Lemma : void-list-equality2
∀[x,y:Void List]. ∀[T:Type].  (x = y ∈ (T List))
Proof
Definitions occuring in Statement : 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
void: Void
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
Lemmas referenced : 
list_wf, 
void-list-equality, 
subtype_rel_list
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
universeEquality, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
because_Cache, 
lemma_by_obid, 
voidEquality, 
applyEquality, 
independent_isectElimination, 
lambdaEquality, 
voidElimination
Latex:
\mforall{}[x,y:Void  List].  \mforall{}[T:Type].    (x  =  y)
Date html generated:
2016_05_15-PM-04_33_48
Last ObjectModification:
2015_12_27-PM-02_46_45
Theory : general
Home
Index