Nuprl Lemma : e-union_wf

[A,B:EType].  (e-union(A;B) ∈ EType)


Proof




Definitions occuring in Statement :  e-union: e-union(A;B) e-type: EType uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T e-type: EType quotient: x,y:A//B[x; y] and: P ∧ Q e-union: e-union(A;B) so_lambda: λ2y.t[x; y] subtype_rel: A ⊆B prop: so_apply: x[s1;s2] uimplies: supposing a all: x:A. B[x] implies:  Q ext-eq: A ≡ B b-union: A ⋃ B tunion: x:A.B[x] bool: 𝔹 unit: Unit ifthenelse: if then else fi  pi2: snd(t)
Lemmas referenced :  e-type_wf quotient-member-eq ext-eq_wf ext-eq-equiv b-union_wf subtype_rel_b-union-left subtype_rel_b-union-right
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut sqequalHypSubstitution pointwiseFunctionalityForEquality introduction extract_by_obid hypothesis sqequalRule pertypeElimination productElimination thin instantiate isectElimination universeEquality lambdaEquality_alt hypothesisEquality applyEquality cumulativity inhabitedIsType equalityTransitivity equalitySymmetry independent_isectElimination dependent_functionElimination independent_functionElimination productIsType equalityIsType4 because_Cache universeIsType independent_pairFormation imageElimination unionElimination equalityElimination

Latex:
\mforall{}[A,B:EType].    (e-union(A;B)  \mmember{}  EType)



Date html generated: 2020_05_20-AM-08_24_38
Last ObjectModification: 2018_10_12-PM-00_37_39

Theory : lattices


Home Index