Nuprl Lemma : all_safety

[T,I:Type]. ∀[P:I ⟶ (T List) ⟶ ℙ].  ((∀x:I. safety(T;L.P[x;L]))  safety(T;L.∀x:I. P[x;L]))


Proof




Definitions occuring in Statement :  safety: safety(A;tr.P[tr]) list: List uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  safety: safety(A;tr.P[tr]) uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s1;s2] so_apply: x[s] guard: {T}
Lemmas referenced :  all_wf iseg_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt lambdaFormation hypothesisEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin lambdaEquality applyEquality hypothesis functionEquality functionIsType universeIsType universeEquality inhabitedIsType dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[T,I:Type].  \mforall{}[P:I  {}\mrightarrow{}  (T  List)  {}\mrightarrow{}  \mBbbP{}].    ((\mforall{}x:I.  safety(T;L.P[x;L]))  {}\mRightarrow{}  safety(T;L.\mforall{}x:I.  P[x;L]))



Date html generated: 2019_10_15-AM-10_54_08
Last ObjectModification: 2018_09_27-AM-10_02_42

Theory : list!


Home Index