Nuprl Lemma : all_safety
∀[T,I:Type]. ∀[P:I ⟶ (T List) ⟶ ℙ].  ((∀x:I. safety(T;L.P[x;L])) 
⇒ safety(T;L.∀x:I. P[x;L]))
Proof
Definitions occuring in Statement : 
safety: safety(A;tr.P[tr])
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
safety: safety(A;tr.P[tr])
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
guard: {T}
Lemmas referenced : 
all_wf, 
iseg_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
lambdaFormation, 
hypothesisEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
lambdaEquality, 
applyEquality, 
hypothesis, 
functionEquality, 
functionIsType, 
universeIsType, 
universeEquality, 
inhabitedIsType, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[T,I:Type].  \mforall{}[P:I  {}\mrightarrow{}  (T  List)  {}\mrightarrow{}  \mBbbP{}].    ((\mforall{}x:I.  safety(T;L.P[x;L]))  {}\mRightarrow{}  safety(T;L.\mforall{}x:I.  P[x;L]))
Date html generated:
2019_10_15-AM-10_54_08
Last ObjectModification:
2018_09_27-AM-10_02_42
Theory : list!
Home
Index