Step
*
1
1
1
1
1
1
of Lemma
rng_prod_plus
1. n : ℤ
2. 0 < n
3. filter(λ2p.(p (n - 1) =z 0);functions-list(n;2)) ∈ (ℕn ⟶ ℕ2) List
4. map(λf,i. if (i =z n - 1) then 0 else f i fi ;functions-list(n - 1;2)) ∈ (ℕn ⟶ ℕ2) List
5. no_repeats(ℕn ⟶ ℕ2;functions-list(n;2))
6. x : ℕn ⟶ ℕ2
7. (x ∈ map(λf,i. if (i =z n - 1) then 0 else f i fi ;functions-list(n - 1;2)))
⊢ (x ∈ filter(λ2p.(p (n - 1) =z 0);functions-list(n;2)))
BY
{ (BLemma `member_filter` THEN Auto) }
1
1. n : ℤ
2. 0 < n
3. filter(λ2p.(p (n - 1) =z 0);functions-list(n;2)) ∈ (ℕn ⟶ ℕ2) List
4. map(λf,i. if (i =z n - 1) then 0 else f i fi ;functions-list(n - 1;2)) ∈ (ℕn ⟶ ℕ2) List
5. no_repeats(ℕn ⟶ ℕ2;functions-list(n;2))
6. x : ℕn ⟶ ℕ2
7. (x ∈ map(λf,i. if (i =z n - 1) then 0 else f i fi ;functions-list(n - 1;2)))
8. (x ∈ functions-list(n;2))
⊢ (x (n - 1)) = 0 ∈ ℤ
Latex:
Latex:
1. n : \mBbbZ{}
2. 0 < n
3. filter(\mlambda{}\msubtwo{}p.(p (n - 1) =\msubz{} 0);functions-list(n;2)) \mmember{} (\mBbbN{}n {}\mrightarrow{} \mBbbN{}2) List
4. map(\mlambda{}f,i. if (i =\msubz{} n - 1) then 0 else f i fi ;functions-list(n - 1;2)) \mmember{} (\mBbbN{}n {}\mrightarrow{} \mBbbN{}2) List
5. no\_repeats(\mBbbN{}n {}\mrightarrow{} \mBbbN{}2;functions-list(n;2))
6. x : \mBbbN{}n {}\mrightarrow{} \mBbbN{}2
7. (x \mmember{} map(\mlambda{}f,i. if (i =\msubz{} n - 1) then 0 else f i fi ;functions-list(n - 1;2)))
\mvdash{} (x \mmember{} filter(\mlambda{}\msubtwo{}p.(p (n - 1) =\msubz{} 0);functions-list(n;2)))
By
Latex:
(BLemma `member\_filter` THEN Auto)
Home
Index