Nuprl Lemma : rng_prod_plus

[r:CRng]. ∀[n:ℕ]. ∀[F,G:ℕn ⟶ |r|].
  ((Π(r) 
         ≤ 
         < n
     F[i] +r G[i])
  = Σ{r} p ∈ functions-list(n;2). (r) 
                                        ≤ 
                                        < n
                                    if (p =z 0) then F[i] else G[i] fi )
  ∈ |r|)


Proof




Definitions occuring in Statement :  rng_lsum: Σ{r} x ∈ as. f[x] functions-list: functions-list(n;b) int_seg: {i..j-} nat: ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] infix_ap: y so_apply: x[s] apply: a function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T rng_prod: rng_prod crng: CRng rng_plus: +r rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} int_seg: {i..j-} lelt: i ≤ j < k crng: CRng rng: Rng le: A ≤ B less_than': less_than'(a;b) true: True nat_plus: + subtype_rel: A ⊆B bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b decidable: Dec(P) squash: T infix_ap: y nequal: a ≠ b ∈  iff: ⇐⇒ Q rev_implies:  Q less_than: a < b sq_stable: SqStable(P) cand: c∧ B rev_uimplies: rev_uimplies(P;Q) subtract: m inject: Inj(A;B;f)
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf rng_prod_empty_lemma int_seg_wf int_seg_properties subtract-1-ge-0 rng_car_wf nat_wf crng_wf rng_one_wf istype-false le_wf rng_lsum_cons_lemma rng_lsum_nil_lemma rng_plus_zero infix_ap_wf rng_plus_wf eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int functions-list_wf decidable__le intformnot_wf int_formula_prop_not_lemma equal_wf istype-universe rng_times_wf decidable__lt itermSubtract_wf int_term_value_subtract_lemma subtract_wf rng_lsum_wf rng_prod_wf iff_weakening_equal squash_wf true_wf list_wf rng_wf functions-list-0 subtype_rel_self rng_prod_unroll_hi rng_times_over_plus rng_lsum-split filter_wf5 l_member_wf rng_times_lsum_r rng_lsum_map int_subtype_base intformeq_wf int_formula_prop_eq_lemma map_wf rng_lsum_functionality_wrt_permutation set_subtype_base lelt_wf sq_stable__no_repeats permutation-when-no_repeats no_repeats_filter member_filter member-functions-list member-map decidable__equal_int subtype_rel_function int_seg_subtype not-le-2 condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul add-zero add-commutes le-add-cancel2 all_wf no_repeats_wf no_repeats-functions-list false_wf no_repeats_map set_wf equal-wf-T-base not_wf bnot_wf assert_wf bool_cases iff_transitivity iff_weakening_uiff assert_of_bnot filter_type equal-wf-base btrue_neq_bfalse eq_int_eq_true and_wf bfalse_wf assert_elim
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation_alt natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType axiomEquality inhabitedIsType functionIsTypeImplies functionIsType productElimination because_Cache functionEquality dependent_set_memberEquality_alt equalitySymmetry applyEquality unionElimination equalityElimination equalityTransitivity equalityIsType1 promote_hyp instantiate cumulativity imageElimination universeEquality productIsType imageMemberEquality baseClosed setIsType equalityIsType2 baseApply closedConclusion hyp_replacement intEquality addEquality minusEquality multiplyEquality functionExtensionality_alt applyLambdaEquality productEquality setEquality functionExtensionality lambdaFormation voidEquality isect_memberEquality lambdaEquality dependent_pairFormation dependent_set_memberEquality impliesFunctionality levelHypothesis addLevel

Latex:
\mforall{}[r:CRng].  \mforall{}[n:\mBbbN{}].  \mforall{}[F,G:\mBbbN{}n  {}\mrightarrow{}  |r|].
    ((\mPi{}(r)  0 
                  \mleq{}  i 
                  <  n
          F[i]  +r  G[i])
    =  \mSigma{}\{r\}  p  \mmember{}  functions-list(n;2).  (\mPi{}(r)  0 
                                                                                \mleq{}  i 
                                                                                <  n
                                                                        if  (p  i  =\msubz{}  0)  then  F[i]  else  G[i]  fi  ))



Date html generated: 2019_10_16-AM-11_27_08
Last ObjectModification: 2018_10_10-AM-10_15_55

Theory : matrices


Home Index