Nuprl Lemma : functions-list-0

[b:ℕ]. (functions-list(0;b) x.x] ∈ ((ℕ0 ⟶ ℕb) List))


Proof




Definitions occuring in Statement :  functions-list: functions-list(n;b) cons: [a b] nil: [] list: List int_seg: {i..j-} nat: uall: [x:A]. B[x] lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a ge: i ≥  lelt: i ≤ j < k int_seg: {i..j-} all: x:A. B[x] so_apply: x[s] so_lambda: λ2x.t[x] prop: implies:  Q not: ¬A false: False less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B nat: member: t ∈ T uall: [x:A]. B[x] true: True decidable: Dec(P) subtype_rel: A ⊆B guard: {T} squash: T cons: [a b] or: P ∨ Q subtract: m select: L[n] no_repeats: no_repeats(T;l) less_than: a < b nat_plus: +
Lemmas referenced :  nat_wf equal_wf lelt_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma intformle_wf itermConstant_wf itermVar_wf intformless_wf intformand_wf full-omega-unsat nat_properties l_member_wf all_wf no_repeats_wf int_seg_wf list_wf set_wf le_wf false_wf functions-list_wf decidable__equal_int int_seg_properties cons_wf product_subtype_list btrue_neq_bfalse nil_wf member-implies-null-eq-bfalse btrue_wf null_nil_lemma list-cases length_of_cons_lemma equal-wf-base int_formula_prop_eq_lemma intformeq_wf decidable__lt nat_plus_properties nat_plus_wf less_than_wf int_term_value_add_lemma int_formula_prop_not_lemma itermAdd_wf intformnot_wf decidable__le non_neg_length length_wf add_nat_plus
Rules used in proof :  equalitySymmetry equalityTransitivity voidEquality voidElimination isect_memberEquality intEquality int_eqEquality dependent_pairFormation independent_functionElimination approximateComputation independent_isectElimination dependent_functionElimination productElimination applyEquality functionExtensionality productEquality lambdaEquality rename setElimination because_Cache functionEquality hypothesisEquality hypothesis lambdaFormation independent_pairFormation sqequalRule natural_numberEquality dependent_set_memberEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution baseClosed imageMemberEquality imageElimination hypothesis_subsumption promote_hyp unionElimination pointwiseFunctionality applyLambdaEquality addEquality

Latex:
\mforall{}[b:\mBbbN{}].  (functions-list(0;b)  =  [\mlambda{}x.x])



Date html generated: 2018_05_21-PM-08_25_09
Last ObjectModification: 2017_12_14-PM-06_48_15

Theory : general


Home Index