Nuprl Lemma : functions-list-0
∀[b:ℕ]. (functions-list(0;b) = [λx.x] ∈ ((ℕ0 ⟶ ℕb) List))
Proof
Definitions occuring in Statement : 
functions-list: functions-list(n;b)
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
top: Top
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
uimplies: b supposing a
, 
ge: i ≥ j 
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
nat: ℕ
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
true: True
, 
decidable: Dec(P)
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
squash: ↓T
, 
cons: [a / b]
, 
or: P ∨ Q
, 
subtract: n - m
, 
select: L[n]
, 
no_repeats: no_repeats(T;l)
, 
less_than: a < b
, 
nat_plus: ℕ+
Lemmas referenced : 
nat_wf, 
equal_wf, 
lelt_wf, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
intformand_wf, 
full-omega-unsat, 
nat_properties, 
l_member_wf, 
all_wf, 
no_repeats_wf, 
int_seg_wf, 
list_wf, 
set_wf, 
le_wf, 
false_wf, 
functions-list_wf, 
decidable__equal_int, 
int_seg_properties, 
cons_wf, 
product_subtype_list, 
btrue_neq_bfalse, 
nil_wf, 
member-implies-null-eq-bfalse, 
btrue_wf, 
null_nil_lemma, 
list-cases, 
length_of_cons_lemma, 
equal-wf-base, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
decidable__lt, 
nat_plus_properties, 
nat_plus_wf, 
less_than_wf, 
int_term_value_add_lemma, 
int_formula_prop_not_lemma, 
itermAdd_wf, 
intformnot_wf, 
decidable__le, 
non_neg_length, 
length_wf, 
add_nat_plus
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
dependent_pairFormation, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
dependent_functionElimination, 
productElimination, 
applyEquality, 
functionExtensionality, 
productEquality, 
lambdaEquality, 
rename, 
setElimination, 
because_Cache, 
functionEquality, 
hypothesisEquality, 
hypothesis, 
lambdaFormation, 
independent_pairFormation, 
sqequalRule, 
natural_numberEquality, 
dependent_set_memberEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
baseClosed, 
imageMemberEquality, 
imageElimination, 
hypothesis_subsumption, 
promote_hyp, 
unionElimination, 
pointwiseFunctionality, 
applyLambdaEquality, 
addEquality
Latex:
\mforall{}[b:\mBbbN{}].  (functions-list(0;b)  =  [\mlambda{}x.x])
Date html generated:
2018_05_21-PM-08_25_09
Last ObjectModification:
2017_12_14-PM-06_48_15
Theory : general
Home
Index