Nuprl Lemma : functions-list_wf
∀[n,b:ℕ].  (functions-list(n;b) ∈ {P:(ℕn ⟶ ℕb) List| no_repeats(ℕn ⟶ ℕb;P) ∧ (∀f:ℕn ⟶ ℕb. (f ∈ P))} )
Proof
Definitions occuring in Statement : 
functions-list: functions-list(n;b)
, 
no_repeats: no_repeats(T;l)
, 
l_member: (x ∈ l)
, 
list: T List
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
so_apply: x[s]
, 
and: P ∧ Q
, 
prop: ℙ
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
functions-list: functions-list(n;b)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
sq_exists: ∃x:A [B[x]]
Lemmas referenced : 
l_member_wf, 
no_repeats_wf, 
int_seg_wf, 
list_wf, 
sq_exists_wf, 
nat_wf, 
all_wf, 
list-functions
Rules used in proof : 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
functionExtensionality, 
productEquality, 
rename, 
setElimination, 
natural_numberEquality, 
functionEquality, 
because_Cache, 
isectElimination, 
hypothesisEquality, 
sqequalHypSubstitution, 
lambdaEquality, 
hypothesis, 
extract_by_obid, 
instantiate, 
thin, 
applyEquality, 
cut, 
introduction, 
isect_memberFormation, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mforall{}[n,b:\mBbbN{}].
    (functions-list(n;b)  \mmember{}  \{P:(\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}b)  List|  no\_repeats(\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}b;P)  \mwedge{}  (\mforall{}f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}b.  (f  \mmember{}  P))\}  )
Date html generated:
2018_05_21-PM-08_24_31
Last ObjectModification:
2017_12_14-PM-06_39_19
Theory : general
Home
Index