Nuprl Lemma : list-functions

n,b:ℕ.  (∃P:(ℕn ⟶ ℕb) List [(no_repeats(ℕn ⟶ ℕb;P) ∧ (∀f:ℕn ⟶ ℕb. (f ∈ P)))])


Proof




Definitions occuring in Statement :  no_repeats: no_repeats(T;l) l_member: (x ∈ l) list: List int_seg: {i..j-} nat: all: x:A. B[x] sq_exists: x:A [B[x]] and: P ∧ Q function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] prop: cand: c∧ B sq_exists: x:A [B[x]] exists: x:A. B[x] implies:  Q and: P ∧ Q iff: ⇐⇒ Q nat: uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x]
Lemmas referenced :  nat_wf l_member_wf all_wf no_repeats_wf exp_wf4 int_seg_wf equipollent-iff-list equipollent-exp
Rules used in proof :  applyEquality functionExtensionality lambdaEquality sqequalRule because_Cache productEquality independent_pairFormation dependent_set_memberEquality independent_functionElimination productElimination rename setElimination natural_numberEquality functionEquality isectElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution hypothesis lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}n,b:\mBbbN{}.    (\mexists{}P:(\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}b)  List  [(no\_repeats(\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}b;P)  \mwedge{}  (\mforall{}f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}b.  (f  \mmember{}  P)))])



Date html generated: 2018_05_21-PM-08_24_08
Last ObjectModification: 2017_12_14-PM-06_35_49

Theory : general


Home Index