Nuprl Lemma : list-functions
∀n,b:ℕ.  (∃P:(ℕn ⟶ ℕb) List [(no_repeats(ℕn ⟶ ℕb;P) ∧ (∀f:ℕn ⟶ ℕb. (f ∈ P)))])
Proof
Definitions occuring in Statement : 
no_repeats: no_repeats(T;l)
, 
l_member: (x ∈ l)
, 
list: T List
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
cand: A c∧ B
, 
sq_exists: ∃x:A [B[x]]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
nat_wf, 
l_member_wf, 
all_wf, 
no_repeats_wf, 
exp_wf4, 
int_seg_wf, 
equipollent-iff-list, 
equipollent-exp
Rules used in proof : 
applyEquality, 
functionExtensionality, 
lambdaEquality, 
sqequalRule, 
because_Cache, 
productEquality, 
independent_pairFormation, 
dependent_set_memberEquality, 
independent_functionElimination, 
productElimination, 
rename, 
setElimination, 
natural_numberEquality, 
functionEquality, 
isectElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
hypothesis, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}n,b:\mBbbN{}.    (\mexists{}P:(\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}b)  List  [(no\_repeats(\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}b;P)  \mwedge{}  (\mforall{}f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}b.  (f  \mmember{}  P)))])
Date html generated:
2018_05_21-PM-08_24_08
Last ObjectModification:
2017_12_14-PM-06_35_49
Theory : general
Home
Index