Nuprl Lemma : member-functions-list
∀n,b:ℕ. ∀f:ℕn ⟶ ℕb.  (f ∈ functions-list(n;b))
Proof
Definitions occuring in Statement : 
functions-list: functions-list(n;b)
, 
l_member: (x ∈ l)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
false: False
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
not: ¬A
Lemmas referenced : 
nat_wf, 
equal_wf, 
compact-finite, 
decidable__equal_int_seg, 
decidable__equal_compact_domain, 
decidable__l_member, 
l_member_wf, 
all_wf, 
no_repeats_wf, 
int_seg_wf, 
list_wf, 
set_wf, 
functions-list_wf
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
voidElimination, 
unionElimination, 
independent_functionElimination, 
dependent_functionElimination, 
applyEquality, 
functionExtensionality, 
productEquality, 
lambdaEquality, 
sqequalRule, 
because_Cache, 
rename, 
setElimination, 
natural_numberEquality, 
functionEquality, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
productElimination
Latex:
\mforall{}n,b:\mBbbN{}.  \mforall{}f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}b.    (f  \mmember{}  functions-list(n;b))
Date html generated:
2018_05_21-PM-08_24_45
Last ObjectModification:
2017_12_14-PM-10_44_03
Theory : general
Home
Index