Nuprl Lemma : zero-vector-add-right
∀[i:Type]. ∀[r:Rng]. ∀[a:i ⟶ |r|].  ((a + 0) = a ∈ (i ⟶ |r|))
Proof
Definitions occuring in Statement : 
zero-vector: 0
, 
vector-add: (a + b)
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
rng: Rng
, 
rng_car: |r|
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
zero-vector: 0
, 
vector-add: (a + b)
, 
and: P ∧ Q
, 
rng: Rng
Lemmas referenced : 
rng_plus_zero, 
rng_car_wf, 
rng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
functionExtensionality, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
productElimination, 
hypothesis, 
functionEquality, 
setElimination, 
rename, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[i:Type].  \mforall{}[r:Rng].  \mforall{}[a:i  {}\mrightarrow{}  |r|].    ((a  +  0)  =  a)
Date html generated:
2018_05_21-PM-09_40_51
Last ObjectModification:
2018_05_19-PM-04_33_20
Theory : matrices
Home
Index