Nuprl Lemma : A-block_wf
∀[Val:Type]. ∀[n:ℕ]. ∀[AType:array{i:l}(Val;n)]. ∀[T:Type].
  (A-block(array-model(AType)) ∈ ⋂T:Type. (Val ⟶ (A-map T) ⟶ T))
Proof
Definitions occuring in Statement : 
A-block: A-block(AModel), 
A-map: A-map, 
array-model: array-model(AType), 
array: array{i:l}(Val;n), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
apply: f a, 
isect: ⋂x:A. B[x], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
array-model: array-model(AType), 
A-block: A-block(AModel), 
A-map: A-map, 
pi2: snd(t), 
pi1: fst(t), 
array-monad: array-monad(AType), 
M-map: M-map(mnd), 
mk_monad: mk_monad(M;return;bind), 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
array_wf, 
nat_wf, 
pi1_wf, 
Arr_wf, 
newarray_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
universeEquality, 
because_Cache, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
isect_memberFormation, 
introduction, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
lambdaEquality, 
applyEquality, 
functionEquality, 
productEquality
Latex:
\mforall{}[Val:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[AType:array\{i:l\}(Val;n)].  \mforall{}[T:Type].
    (A-block(array-model(AType))  \mmember{}  \mcap{}T:Type.  (Val  {}\mrightarrow{}  (A-map  T)  {}\mrightarrow{}  T))
Date html generated:
2016_05_15-PM-02_18_35
Last ObjectModification:
2015_12_27-AM-08_58_45
Theory : monads
Home
Index