Nuprl Lemma : A-fetch'_wf
∀[Val:Type]. ∀[n:ℕ]. ∀[AType:array{i:l}(Val;n)].
(A-fetch'(array-model(AType)) ∈ ℕn ⟶ (A-map'(array-model(AType)) Val))
Proof
Definitions occuring in Statement :
A-fetch': A-fetch'(AModel)
,
A-map': A-map'(AModel)
,
array-model: array-model(AType)
,
array: array{i:l}(Val;n)
,
int_seg: {i..j-}
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
apply: f a
,
function: x:A ⟶ B[x]
,
natural_number: $n
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
array-model: array-model(AType)
,
A-fetch': A-fetch'(AModel)
,
A-map': A-map'(AModel)
,
pi2: snd(t)
,
pi1: fst(t)
,
array-monad': array-monad'(AType)
,
M-map: M-map(mnd)
,
mk_monad: mk_monad(M;return;bind)
,
nat: ℕ
Lemmas referenced :
array_wf,
nat_wf,
idx_wf,
Arr_wf,
int_seg_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalHypSubstitution,
hypothesis,
sqequalRule,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
lemma_by_obid,
isectElimination,
thin,
hypothesisEquality,
isect_memberEquality,
because_Cache,
universeEquality,
lambdaEquality,
applyEquality,
natural_numberEquality,
setElimination,
rename
Latex:
\mforall{}[Val:Type]. \mforall{}[n:\mBbbN{}]. \mforall{}[AType:array\{i:l\}(Val;n)].
(A-fetch'(array-model(AType)) \mmember{} \mBbbN{}n {}\mrightarrow{} (A-map'(array-model(AType)) Val))
Date html generated:
2016_05_15-PM-02_18_49
Last ObjectModification:
2015_12_27-AM-08_58_39
Theory : monads
Home
Index