Nuprl Lemma : A-fetch2_wf

[Val:Type]. ∀[n:ℕ]. ∀[AType:array{i:l}(Val;n)]. ∀[i:ℕn].  (A-fetch2(array-model(AType);i) ∈ A-map Val)


Proof




Definitions occuring in Statement :  A-fetch2: A-fetch2(AModel;i) A-map: A-map array-model: array-model(AType) array: array{i:l}(Val;n) int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T apply: a natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T A-fetch2: A-fetch2(AModel;i) nat:
Lemmas referenced :  A-fetch_wf int_seg_wf array_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule applyEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry natural_numberEquality setElimination rename isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[Val:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[AType:array\{i:l\}(Val;n)].  \mforall{}[i:\mBbbN{}n].
    (A-fetch2(array-model(AType);i)  \mmember{}  A-map  Val)



Date html generated: 2016_05_15-PM-02_20_40
Last ObjectModification: 2015_12_27-AM-08_57_58

Theory : monads


Home Index