Nuprl Lemma : A-null_wf
∀[Val:Type]. ∀[n:ℕ]. ∀[AType:array{i:l}(Val;n)].  (A-null(AType) ∈ A-map Unit)
Proof
Definitions occuring in Statement : 
A-null: A-null(AType)
, 
A-map: A-map
, 
array-model: array-model(AType)
, 
array: array{i:l}(Val;n)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
unit: Unit
, 
member: t ∈ T
, 
apply: f a
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
A-null: A-null(AType)
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
A-return_wf, 
unit_wf2, 
A-map_wf, 
it_wf, 
array_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
applyEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
equalityTransitivity, 
equalitySymmetry, 
isectEquality, 
universeEquality, 
cumulativity, 
functionEquality, 
axiomEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[Val:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[AType:array\{i:l\}(Val;n)].    (A-null(AType)  \mmember{}  A-map  Unit)
Date html generated:
2016_05_15-PM-02_19_16
Last ObjectModification:
2015_12_27-AM-08_58_22
Theory : monads
Home
Index