Nuprl Lemma : simple-swap2_wf

[n:ℕ]. ∀[AType:array{i:l}(ℤ;n)]. ∀[i,j:ℕn].  (simple-swap2(array-model(AType);i;j) ∈ A-map Unit)


Proof




Definitions occuring in Statement :  simple-swap2: simple-swap2(AModel;i;j) A-map: A-map array-model: array-model(AType) array: array{i:l}(Val;n) int_seg: {i..j-} nat: uall: [x:A]. B[x] unit: Unit member: t ∈ T apply: a natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T simple-swap2: simple-swap2(AModel;i;j) array-model: array-model(AType) A-bind: A-bind(AModel) A-fetch: A-fetch(AModel) A-map: A-map pi2: snd(t) pi1: fst(t) M-map: M-map(mnd) array-monad: array-monad(AType) M-bind: M-bind(Mnd) M-return: M-return(Mnd) A-coerce: A-coerce(AModel) let: let Arr: Arr(AType) mk_monad: mk_monad(M;return;bind) idx: idx(AType) upd: upd(AType) A-assign: A-assign(AModel) A-fetch': A-fetch'(AModel) array: array{i:l}(Val;n) nat:
Lemmas referenced :  it_wf int_seg_wf array_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin lambdaEquality independent_pairEquality lemma_by_obid hypothesis applyEquality hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry isectElimination natural_numberEquality setElimination rename isect_memberEquality because_Cache intEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[AType:array\{i:l\}(\mBbbZ{};n)].  \mforall{}[i,j:\mBbbN{}n].    (simple-swap2(array-model(AType);i;j)  \mmember{}  A-map  Unit)



Date html generated: 2016_05_15-PM-02_20_33
Last ObjectModification: 2015_12_27-AM-08_58_06

Theory : monads


Home Index