Step
*
1
1
1
1
of Lemma
fps-mul-single-general
1. X : Type
2. valueall-type(X)
3. eq : EqDecider(X)
4. r : CRng
5. c : bag(X)
6. f : PowerSeries(X;r)
7. Comm(|r|;+r)
8. IsMonoid(|r|;+r;0)
9. b : bag(X)@i
10. x : bag(X)@i
11. b = (c + x) ∈ bag(X)
12. [p∈bag-partitions(eq;b)|bag-eq(eq;fst(p);c)] = {<c, x>} ∈ bag(bag(X) × bag(X))
⊢ (* (<c> (fst(<c, x>))) (f (snd(<c, x>)))) = (f x) ∈ |r|
BY
{ (RepUR ``fps-single`` 0 THEN AutoSplit) }
1
1. X : Type
2. valueall-type(X)
3. eq : EqDecider(X)
4. r : CRng
5. c : bag(X)
6. f : PowerSeries(X;r)
7. Comm(|r|;+r)
8. IsMonoid(|r|;+r;0)
9. b : bag(X)@i
10. x : bag(X)@i
11. b = (c + x) ∈ bag(X)
12. [p∈bag-partitions(eq;b)|bag-eq(eq;fst(p);c)] = {<c, x>} ∈ bag(bag(X) × bag(X))
13. c = c ∈ bag(X)
⊢ (* 1 (f x)) = (f x) ∈ |r|
Latex:
Latex:
1. X : Type
2. valueall-type(X)
3. eq : EqDecider(X)
4. r : CRng
5. c : bag(X)
6. f : PowerSeries(X;r)
7. Comm(|r|;+r)
8. IsMonoid(|r|;+r;0)
9. b : bag(X)@i
10. x : bag(X)@i
11. b = (c + x)
12. [p\mmember{}bag-partitions(eq;b)|bag-eq(eq;fst(p);c)] = \{<c, x>\}
\mvdash{} (* (<c> (fst(<c, x>))) (f (snd(<c, x>)))) = (f x)
By
Latex:
(RepUR ``fps-single`` 0 THEN AutoSplit)
Home
Index