Nuprl Lemma : integer-part-decomp
∀q:ℚ. (∃p:{ℤ × {r:ℚ| (0 ≤ r) ∧ r < 1} | let x,r = p in q = (x + r) ∈ ℚ})
Proof
Definitions occuring in Statement : 
qle: r ≤ s
, 
qless: r < s
, 
qadd: r + s
, 
rationals: ℚ
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:{A| B[x]}
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
spread: spread def, 
product: x:A × B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
sq_exists: ∃x:{A| B[x]}
Lemmas referenced : 
rat-int-part_wf2, 
rationals_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
hypothesis
Latex:
\mforall{}q:\mBbbQ{}.  (\mexists{}p:\{\mBbbZ{}  \mtimes{}  \{r:\mBbbQ{}|  (0  \mleq{}  r)  \mwedge{}  r  <  1\}  |  let  x,r  =  p  in  q  =  (x  +  r)\})
Date html generated:
2016_05_15-PM-11_39_53
Last ObjectModification:
2015_12_27-PM-07_25_28
Theory : rationals
Home
Index