Nuprl Lemma : integer-part-decomp

q:ℚ(∃p:{ℤ × {r:ℚ(0 ≤ r) ∧ r < 1} let x,r in (x r) ∈ ℚ})


Proof




Definitions occuring in Statement :  qle: r ≤ s qless: r < s qadd: s rationals: all: x:A. B[x] sq_exists: x:{A| B[x]} and: P ∧ Q set: {x:A| B[x]}  spread: spread def product: x:A × B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T and: P ∧ Q sq_exists: x:{A| B[x]}
Lemmas referenced :  rat-int-part_wf2 rationals_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation introduction cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality sqequalRule hypothesis

Latex:
\mforall{}q:\mBbbQ{}.  (\mexists{}p:\{\mBbbZ{}  \mtimes{}  \{r:\mBbbQ{}|  (0  \mleq{}  r)  \mwedge{}  r  <  1\}  |  let  x,r  =  p  in  q  =  (x  +  r)\})



Date html generated: 2016_05_15-PM-11_39_53
Last ObjectModification: 2015_12_27-PM-07_25_28

Theory : rationals


Home Index