Nuprl Lemma : q-linear-form_wf
∀[n:ℕ]. (q-linear-form(n) ∈ Type)
Proof
Definitions occuring in Statement : 
q-linear-form: q-linear-form(n)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
q-linear-form: q-linear-form(n)
Lemmas referenced : 
qvn_wf, 
rationals_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
productEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[n:\mBbbN{}].  (q-linear-form(n)  \mmember{}  Type)
Date html generated:
2016_05_15-PM-11_22_06
Last ObjectModification:
2015_12_27-PM-07_32_33
Theory : rationals
Home
Index