Nuprl Lemma : q-linear-form_wf

[n:ℕ]. (q-linear-form(n) ∈ Type)


Proof




Definitions occuring in Statement :  q-linear-form: q-linear-form(n) nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T q-linear-form: q-linear-form(n)
Lemmas referenced :  qvn_wf rationals_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule productEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[n:\mBbbN{}].  (q-linear-form(n)  \mmember{}  Type)



Date html generated: 2016_05_15-PM-11_22_06
Last ObjectModification: 2015_12_27-PM-07_32_33

Theory : rationals


Home Index