Nuprl Lemma : qvn_wf
∀[n:ℕ]. (ℚ^n ∈ Type)
Proof
Definitions occuring in Statement : 
qvn: ℚ^n
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
qvn: ℚ^n
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
top: Top
, 
nat: ℕ
, 
prop: ℙ
Lemmas referenced : 
list_wf, 
rationals_wf, 
equal_wf, 
qv-dim_wf, 
subtype_rel_list, 
top_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
setEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
intEquality, 
hypothesisEquality, 
applyEquality, 
independent_isectElimination, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[n:\mBbbN{}].  (\mBbbQ{}\^{}n  \mmember{}  Type)
Date html generated:
2018_05_22-AM-00_20_46
Last ObjectModification:
2017_07_26-PM-06_55_18
Theory : rationals
Home
Index