Nuprl Lemma : qvn_wf

[n:ℕ]. (ℚ^n ∈ Type)


Proof




Definitions occuring in Statement :  qvn: ^n nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T qvn: ^n subtype_rel: A ⊆B uimplies: supposing a top: Top nat: prop:
Lemmas referenced :  list_wf rationals_wf equal_wf qv-dim_wf subtype_rel_list top_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule setEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis intEquality hypothesisEquality applyEquality independent_isectElimination lambdaEquality isect_memberEquality voidElimination voidEquality because_Cache setElimination rename axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[n:\mBbbN{}].  (\mBbbQ{}\^{}n  \mmember{}  Type)



Date html generated: 2018_05_22-AM-00_20_46
Last ObjectModification: 2017_07_26-PM-06_55_18

Theory : rationals


Home Index