Nuprl Lemma : qabs-nonneg

[r:ℚ]. (0 ≤ |r|)


Proof




Definitions occuring in Statement :  qabs: |r| qle: r ≤ s rationals: uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B implies:  Q
Lemmas referenced :  zero-qle-qabs qle_witness int-subtype-rationals qabs_wf rationals_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis natural_numberEquality applyEquality sqequalRule independent_functionElimination

Latex:
\mforall{}[r:\mBbbQ{}].  (0  \mleq{}  |r|)



Date html generated: 2016_05_15-PM-11_01_25
Last ObjectModification: 2015_12_27-PM-07_48_07

Theory : rationals


Home Index