Nuprl Lemma : qabs-nonneg
∀[r:ℚ]. (0 ≤ |r|)
Proof
Definitions occuring in Statement : 
qabs: |r|
, 
qle: r ≤ s
, 
rationals: ℚ
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
Lemmas referenced : 
zero-qle-qabs, 
qle_witness, 
int-subtype-rationals, 
qabs_wf, 
rationals_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
applyEquality, 
sqequalRule, 
independent_functionElimination
Latex:
\mforall{}[r:\mBbbQ{}].  (0  \mleq{}  |r|)
Date html generated:
2016_05_15-PM-11_01_25
Last ObjectModification:
2015_12_27-PM-07_48_07
Theory : rationals
Home
Index