Nuprl Lemma : qdeq_wf

qdeq() ∈ EqDecider(ℚ)


Proof




Definitions occuring in Statement :  qdeq: qdeq() rationals: deq: EqDecider(T) member: t ∈ T
Definitions unfolded in proof :  rev_implies:  Q uimplies: supposing a rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) implies:  Q and: P ∧ Q iff: ⇐⇒ Q all: x:A. B[x] uall: [x:A]. B[x] deq: EqDecider(T) member: t ∈ T qdeq: qdeq()
Lemmas referenced :  istype-assert assert-qeq rationals_wf qeq_wf2
Rules used in proof :  applyEquality productIsType functionIsType because_Cache equalityIstype independent_isectElimination productElimination independent_pairFormation lambdaFormation_alt sqequalRule universeIsType inhabitedIsType hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaEquality_alt dependent_set_memberEquality_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
qdeq()  \mmember{}  EqDecider(\mBbbQ{})



Date html generated: 2019_10_29-AM-07_43_24
Last ObjectModification: 2019_10_18-AM-11_45_20

Theory : rationals


Home Index