Nuprl Lemma : qrep-denom
∀[r:ℚ]. (qrep(r) ∈ ℤ × ℕ+)
Proof
Definitions occuring in Statement : 
qrep: qrep(r)
, 
rationals: ℚ
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
product: x:A × B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
qrep_wf, 
rationals_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[r:\mBbbQ{}].  (qrep(r)  \mmember{}  \mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{})
Date html generated:
2016_05_15-PM-10_39_06
Last ObjectModification:
2015_12_27-PM-07_59_17
Theory : rationals
Home
Index