Nuprl Lemma : cat-isomorphic_transitivity

C:SmallCategory. ∀a,b,c:cat-ob(C).  (cat-isomorphic(C;a;b)  cat-isomorphic(C;b;c)  cat-isomorphic(C;a;c))


Proof




Definitions occuring in Statement :  cat-isomorphic: cat-isomorphic(C;x;y) cat-ob: cat-ob(C) small-category: SmallCategory all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q cat-isomorphic: cat-isomorphic(C;x;y) exists: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] prop:
Lemmas referenced :  cat-comp_wf cat-comp-isomorphism cat-isomorphism_wf cat-isomorphic_wf cat-ob_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin dependent_pairFormation applyEquality cut introduction extract_by_obid isectElimination hypothesisEquality hypothesis dependent_functionElimination independent_functionElimination

Latex:
\mforall{}C:SmallCategory.  \mforall{}a,b,c:cat-ob(C).
    (cat-isomorphic(C;a;b)  {}\mRightarrow{}  cat-isomorphic(C;b;c)  {}\mRightarrow{}  cat-isomorphic(C;a;c))



Date html generated: 2020_05_20-AM-07_50_19
Last ObjectModification: 2017_01_08-PM-01_40_04

Theory : small!categories


Home Index