Nuprl Lemma : presheaf_map_wf

[C:SmallCategory]. ∀[A,B:Presheaf(C)].  (A ⟶ B ∈ 𝕌')


Proof




Definitions occuring in Statement :  presheaf_map: A ⟶ B presheaf: Presheaf(C) small-category: SmallCategory uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T presheaf_map: A ⟶ B subtype_rel: A ⊆B presheaf: Presheaf(C)
Lemmas referenced :  nat-trans_wf op-cat_wf small-category-subtype type-cat_wf presheaf_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[A,B:Presheaf(C)].    (A  {}\mrightarrow{}  B  \mmember{}  \mBbbU{}')



Date html generated: 2020_05_20-AM-07_57_44
Last ObjectModification: 2017_10_04-PM-06_00_25

Theory : small!categories


Home Index