Nuprl Lemma : presheaf_map_wf
∀[C:SmallCategory]. ∀[A,B:Presheaf(C)].  (A ⟶ B ∈ 𝕌')
Proof
Definitions occuring in Statement : 
presheaf_map: A ⟶ B
, 
presheaf: Presheaf(C)
, 
small-category: SmallCategory
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
presheaf_map: A ⟶ B
, 
subtype_rel: A ⊆r B
, 
presheaf: Presheaf(C)
Lemmas referenced : 
nat-trans_wf, 
op-cat_wf, 
small-category-subtype, 
type-cat_wf, 
presheaf_wf, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[A,B:Presheaf(C)].    (A  {}\mrightarrow{}  B  \mmember{}  \mBbbU{}')
Date html generated:
2020_05_20-AM-07_57_44
Last ObjectModification:
2017_10_04-PM-06_00_25
Theory : small!categories
Home
Index