Nuprl Lemma : map-simple-reduce
∀[f,d,c,as:Top].
(map(f;reduce(λx,a. case d[x] of inl(u) => a | inr(v) => [c[x] / a];[];as)) ~ reduce(λx,a. case d[x]
of inl(u) =>
a
| inr(v) =>
[f c[x] / a];[];as))
Proof
Definitions occuring in Statement :
map: map(f;as)
,
reduce: reduce(f;k;as)
,
cons: [a / b]
,
nil: []
,
uall: ∀[x:A]. B[x]
,
top: Top
,
so_apply: x[s]
,
apply: f a
,
lambda: λx.A[x]
,
decide: case b of inl(x) => s[x] | inr(y) => t[y]
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
reduce: reduce(f;k;as)
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
uimplies: b supposing a
,
strict1: strict1(F)
,
and: P ∧ Q
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
map: map(f;as)
,
list_ind: list_ind,
has-value: (a)↓
,
prop: ℙ
,
or: P ∨ Q
,
squash: ↓T
,
guard: {T}
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
so_apply: x[s1;s2;s3]
,
ifthenelse: if b then t else f fi
,
top: Top
Lemmas referenced :
top_wf,
map_nil_lemma,
sqle_wf_base,
map_cons_lemma,
map-ifthenelse,
is-exception_wf,
base_wf,
has-value_wf_base,
sqequal-list_ind
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
thin,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
baseApply,
closedConclusion,
baseClosed,
hypothesisEquality,
independent_isectElimination,
independent_pairFormation,
lambdaFormation,
callbyvalueCallbyvalue,
hypothesis,
callbyvalueReduce,
callbyvalueExceptionCases,
inlFormation,
imageMemberEquality,
imageElimination,
exceptionSqequal,
inrFormation,
isect_memberEquality,
voidElimination,
voidEquality,
dependent_functionElimination,
divergentSqle,
sqleRule,
sqleReflexivity,
because_Cache,
sqequalAxiom
Latex:
\mforall{}[f,d,c,as:Top].
(map(f;reduce(\mlambda{}x,a. case d[x] of inl(u) => a | inr(v) => [c[x] / a];[];as))
\msim{} reduce(\mlambda{}x,a. case d[x] of inl(u) => a | inr(v) => [f c[x] / a];[];as))
Date html generated:
2016_05_15-PM-02_07_37
Last ObjectModification:
2016_01_15-PM-10_24_08
Theory : untyped!computation
Home
Index