Nuprl Lemma : p-unitize-unit

p:ℕ+. ∀a:p-units(p). ∀n:ℕ+.  (p-unitize(p;a;n) = <0, a> ∈ (k:ℕ × {b:p-units(p)| p^k(p) a ∈ p-adics(p)} ))


Proof




Definitions occuring in Statement :  p-unitize: p-unitize(p;a;n) p-units: p-units(p) p-int: k(p) p-mul: y p-adics: p-adics(p) exp: i^n nat_plus: + nat: all: x:A. B[x] set: {x:A| B[x]}  pair: <a, b> product: x:A × B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] p-units: p-units(p) p-unitize: p-unitize(p;a;n) member: t ∈ T nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: uall: [x:A]. B[x] top: Top p-adics: p-adics(p) nat_plus: + less_than: a < b squash: T true: True subtype_rel: A ⊆B uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) guard: {T} int_seg: {i..j-} lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] ge: i ≥  uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) p-int: k(p) p-mul: y p-reduce: mod(p^n) int_upper: {i...} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  false_wf le_wf exp0_lemma not_wf equal-wf-T-base less_than_wf equal_wf p-adics_wf p-mul_wf p-int_wf p-units_wf exp_wf2 nat_plus_wf subtype_base_sq nat_wf set_subtype_base int_subtype_base decidable__equal_nat greatest-p-zero_wf greatest-p-zero-property nat_plus_subtype_nat nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf lelt_wf decidable__le intformle_wf int_formula_prop_le_lemma nat_properties intformeq_wf int_formula_prop_eq_lemma decidable__equal_int p-adics-equal modulus_wf_int_mod exp_wf_nat_plus int-subtype-int_mod int_seg_wf one-mul p-adic-property eqmod_functionality_wrt_eqmod eqmod_transitivity mod-eqmod multiply_functionality_wrt_eqmod eqmod_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution setElimination thin rename sqequalRule dependent_pairEquality dependent_set_memberEquality natural_numberEquality independent_pairFormation hypothesis introduction extract_by_obid isectElimination hypothesisEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality intEquality applyEquality imageMemberEquality baseClosed because_Cache setEquality instantiate cumulativity independent_isectElimination lambdaEquality unionElimination equalityTransitivity equalitySymmetry independent_functionElimination productElimination addEquality approximateComputation dependent_pairFormation int_eqEquality applyLambdaEquality multiplyEquality

Latex:
\mforall{}p:\mBbbN{}\msupplus{}.  \mforall{}a:p-units(p).  \mforall{}n:\mBbbN{}\msupplus{}.    (p-unitize(p;a;n)  =  ɘ,  a>)



Date html generated: 2018_05_21-PM-03_22_36
Last ObjectModification: 2018_05_19-AM-08_22_27

Theory : rings_1


Home Index