Nuprl Lemma : quot_ring_car_elim

[r:CRng]. ∀[a:Ideal(r){i}].
  ((∀x:|r|. SqStable(a x))  (∀[d:detach_fun(|r|;a)]. ∀[u,v:|r|].  uiff(u v ∈ Carrier(r/d);↑(d (u +r (-r v))))))


Proof




Definitions occuring in Statement :  quot_ring_car: Carrier(r/d) ideal: Ideal(r){i} crng: CRng rng_minus: -r rng_plus: +r rng_car: |r| detach_fun: detach_fun(T;A) assert: b sq_stable: SqStable(P) uiff: uiff(P;Q) uall: [x:A]. B[x] infix_ap: y all: x:A. B[x] implies:  Q apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a detach_fun: detach_fun(T;A) infix_ap: y crng: CRng rng: Rng prop: subtype_rel: A ⊆B ideal: Ideal(r){i} so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] quot_ring_car: Carrier(r/d) quotient: x,y:A//B[x; y] sq_type: SQType(T) guard: {T} assert: b ifthenelse: if then else fi  btrue: tt true: True so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  assert_witness rng_plus_wf rng_minus_wf equal_wf quot_ring_car_wf quot_ring_car_subtype assert_wf rng_car_wf detach_fun_wf all_wf sq_stable_wf ideal_wf crng_wf assert_elim subtype_base_sq bool_wf bool_subtype_base and_wf member_wf quotient-member-eq det_ideal_defines_eqv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation independent_pairFormation lemma_by_obid sqequalHypSubstitution isectElimination thin applyEquality setElimination rename hypothesisEquality hypothesis independent_functionElimination sqequalRule productElimination independent_pairEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry axiomEquality lambdaEquality dependent_functionElimination pertypeElimination independent_isectElimination instantiate cumulativity natural_numberEquality

Latex:
\mforall{}[r:CRng].  \mforall{}[a:Ideal(r)\{i\}].
    ((\mforall{}x:|r|.  SqStable(a  x))  {}\mRightarrow{}  (\mforall{}[d:detach\_fun(|r|;a)].  \mforall{}[u,v:|r|].    uiff(u  =  v;\muparrow{}(d  (u  +r  (-r  v))))))



Date html generated: 2016_05_15-PM-00_24_25
Last ObjectModification: 2015_12_27-AM-00_00_32

Theory : rings_1


Home Index