Nuprl Lemma : quot_ring_car_elim
∀[r:CRng]. ∀[a:Ideal(r){i}].
  ((∀x:|r|. SqStable(a x)) 
⇒ (∀[d:detach_fun(|r|;a)]. ∀[u,v:|r|].  uiff(u = v ∈ Carrier(r/d);↑(d (u +r (-r v))))))
Proof
Definitions occuring in Statement : 
quot_ring_car: Carrier(r/d)
, 
ideal: Ideal(r){i}
, 
crng: CRng
, 
rng_minus: -r
, 
rng_plus: +r
, 
rng_car: |r|
, 
detach_fun: detach_fun(T;A)
, 
assert: ↑b
, 
sq_stable: SqStable(P)
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
detach_fun: detach_fun(T;A)
, 
infix_ap: x f y
, 
crng: CRng
, 
rng: Rng
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
ideal: Ideal(r){i}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
quot_ring_car: Carrier(r/d)
, 
quotient: x,y:A//B[x; y]
, 
sq_type: SQType(T)
, 
guard: {T}
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
true: True
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
assert_witness, 
rng_plus_wf, 
rng_minus_wf, 
equal_wf, 
quot_ring_car_wf, 
quot_ring_car_subtype, 
assert_wf, 
rng_car_wf, 
detach_fun_wf, 
all_wf, 
sq_stable_wf, 
ideal_wf, 
crng_wf, 
assert_elim, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
and_wf, 
member_wf, 
quotient-member-eq, 
det_ideal_defines_eqv
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
independent_pairFormation, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
lambdaEquality, 
dependent_functionElimination, 
pertypeElimination, 
independent_isectElimination, 
instantiate, 
cumulativity, 
natural_numberEquality
Latex:
\mforall{}[r:CRng].  \mforall{}[a:Ideal(r)\{i\}].
    ((\mforall{}x:|r|.  SqStable(a  x))  {}\mRightarrow{}  (\mforall{}[d:detach\_fun(|r|;a)].  \mforall{}[u,v:|r|].    uiff(u  =  v;\muparrow{}(d  (u  +r  (-r  v))))))
Date html generated:
2016_05_15-PM-00_24_25
Last ObjectModification:
2015_12_27-AM-00_00_32
Theory : rings_1
Home
Index