Nuprl Lemma : lookup_before_start_a
∀a:QOSet. ∀b:AbMon. ∀k:|a|. ∀ps:(|a| × |b|) List.
  ((↑(∀bk'(:|a|) ∈ map(λz.(fst(z));ps). (k' <b k))) ⇒ ((ps[k]) = e ∈ |b|))
Proof
Definitions occuring in Statement : 
lookup: as[k], 
ball: ball, 
map: map(f;as), 
list: T List, 
assert: ↑b, 
pi1: fst(t), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
lambda: λx.A[x], 
product: x:A × B[x], 
equal: s = t ∈ T, 
abmonoid: AbMon, 
grp_id: e, 
grp_car: |g|, 
qoset: QOSet, 
set_blt: a <b b, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
qoset: QOSet, 
dset: DSet, 
abmonoid: AbMon, 
mon: Mon, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
pi1: fst(t), 
so_apply: x[s], 
ball: ball, 
top: Top, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
band: p ∧b q, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
bfalse: ff, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
infix_ap: x f y, 
not: ¬A, 
false: False, 
guard: {T}
Lemmas referenced : 
list_induction, 
set_car_wf, 
grp_car_wf, 
assert_wf, 
ball_wf, 
map_wf, 
set_blt_wf, 
equal_wf, 
lookup_wf, 
grp_id_wf, 
list_wf, 
pi1_wf, 
abmonoid_wf, 
qoset_wf, 
map_nil_lemma, 
lookup_nil_lemma, 
ball_nil_lemma, 
true_wf, 
map_cons_lemma, 
lookup_cons_pr_lemma, 
ball_cons_lemma, 
iff_transitivity, 
bool_wf, 
eqtt_to_assert, 
assert_of_set_lt, 
set_lt_wf, 
iff_weakening_uiff, 
assert_of_band, 
set_eq_wf, 
uiff_transitivity, 
equal-wf-T-base, 
assert_of_dset_eq, 
bnot_wf, 
not_wf, 
eqff_to_assert, 
assert_of_bnot, 
set_lt_transitivity_2, 
set_leq_weakening_eq, 
set_lt_irreflexivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
productEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
dependent_functionElimination, 
because_Cache, 
productElimination, 
independent_functionElimination, 
independent_pairEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
unionElimination, 
equalityElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairFormation, 
applyEquality, 
baseClosed, 
impliesFunctionality
Latex:
\mforall{}a:QOSet.  \mforall{}b:AbMon.  \mforall{}k:|a|.  \mforall{}ps:(|a|  \mtimes{}  |b|)  List.
    ((\muparrow{}(\mforall{}\msubb{}k'(:|a|)  \mmember{}  map(\mlambda{}z.(fst(z));ps).  (k'  <\msubb{}  k)))  {}\mRightarrow{}  ((ps[k])  =  e))
 Date html generated: 
2017_10_01-AM-10_02_17
 Last ObjectModification: 
2017_03_03-PM-01_04_38
Theory : polynom_2
Home
Index