Nuprl Lemma : lookup_fails
∀a:DSet. ∀B:Type. ∀z:B. ∀k:|a|. ∀ps:(|a| × B) List.  ((¬↑(k ∈b map(λx.(fst(x));ps))) ⇒ ((ps[k]) = z ∈ B))
Proof
Definitions occuring in Statement : 
lookup: as[k], 
mem: a ∈b as, 
map: map(f;as), 
list: T List, 
assert: ↑b, 
pi1: fst(t), 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
lambda: λx.A[x], 
product: x:A × B[x], 
universe: Type, 
equal: s = t ∈ T, 
dset: DSet, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
dset: DSet, 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
prop: ℙ, 
so_apply: x[s], 
top: Top, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
infix_ap: x f y, 
not: ¬A, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
rev_implies: P ⇐ Q, 
or: P ∨ Q, 
false: False, 
pi1: fst(t), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt
Lemmas referenced : 
list_induction, 
set_car_wf, 
not_wf, 
assert_wf, 
mem_wf, 
map_wf, 
pi1_wf, 
equal_wf, 
lookup_wf, 
list_wf, 
map_nil_lemma, 
lookup_nil_lemma, 
mem_nil_lemma, 
false_wf, 
map_cons_lemma, 
mem_cons_lemma, 
bor_wf, 
set_eq_wf, 
dset_wf, 
iff_transitivity, 
or_wf, 
iff_weakening_uiff, 
assert_of_bor, 
assert_of_dset_eq, 
not_over_or, 
lookup_cons_pr_lemma, 
bool_wf, 
uiff_transitivity, 
equal-wf-T-base, 
eqtt_to_assert, 
bnot_wf, 
eqff_to_assert, 
assert_of_bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
productEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
independent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
applyEquality, 
universeEquality, 
addLevel, 
impliesFunctionality, 
independent_pairFormation, 
orFunctionality, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
levelHypothesis, 
promote_hyp, 
impliesLevelFunctionality, 
unionElimination, 
equalityElimination, 
baseClosed
Latex:
\mforall{}a:DSet.  \mforall{}B:Type.  \mforall{}z:B.  \mforall{}k:|a|.  \mforall{}ps:(|a|  \mtimes{}  B)  List.
    ((\mneg{}\muparrow{}(k  \mmember{}\msubb{}  map(\mlambda{}x.(fst(x));ps)))  {}\mRightarrow{}  ((ps[k])  =  z))
 Date html generated: 
2017_10_01-AM-10_02_05
 Last ObjectModification: 
2017_03_03-PM-01_04_24
Theory : polynom_2
Home
Index