Nuprl Lemma : MultiTree-induction
∀[T:Type]. ∀[P:MultiTree(T) ─→ ℙ].
  ((∀labels:{L:Atom List| 0 < ||L||} . ∀children:{a:Atom| (a ∈ labels)}  ─→ MultiTree(T).
      ((∀u:{a:Atom| (a ∈ labels)} . P[children u]) ⇒ P[MTree_Node(labels;children)]))
  ⇒ (∀val:T. P[MTree_Leaf(val)])
  ⇒ {∀v:MultiTree(T). P[v]})
Proof
Definitions occuring in Statement : 
MTree_Leaf: MTree_Leaf(val), 
MTree_Node: MTree_Node(labels;children), 
MultiTree: MultiTree(T), 
l_member: (x ∈ l), 
length: ||as||, 
list: T List, 
less_than: a < b, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
guard: {T}, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
apply: f a, 
function: x:A ─→ B[x], 
natural_number: $n, 
atom: Atom, 
universe: Type
Lemmas : 
uniform-comp-nat-induction, 
all_wf, 
MultiTree_wf, 
isect_wf, 
le_wf, 
MultiTree_size_wf, 
nat_wf, 
less_than_wf, 
MultiTree-ext, 
eq_atom_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_base_sq, 
atom_subtype_base, 
sum-nat, 
length_wf_nat, 
select_wf, 
l_member_wf, 
list-subtype, 
sq_stable__le, 
int_seg_wf, 
length_wf, 
decidable__lt, 
sum_wf, 
false_wf, 
add_functionality_wrt_le, 
add-swap, 
add-commutes, 
le-add-cancel, 
sum-nat-less, 
subtract_wf, 
decidable__le, 
not-le-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-add, 
minus-minus, 
add-associates, 
add-zero, 
subtract-is-less, 
lelt_wf, 
nat_properties, 
set_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
uall_wf, 
le_weakening, 
MTree_Leaf_wf, 
list_wf, 
MTree_Node_wf, 
and_wf
\mforall{}[T:Type].  \mforall{}[P:MultiTree(T)  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}labels:\{L:Atom  List|  0  <  ||L||\}  .  \mforall{}children:\{a:Atom|  (a  \mmember{}  labels)\}    {}\mrightarrow{}  MultiTree(T).
            ((\mforall{}u:\{a:Atom|  (a  \mmember{}  labels)\}  .  P[children  u])  {}\mRightarrow{}  P[MTree\_Node(labels;children)]))
    {}\mRightarrow{}  (\mforall{}val:T.  P[MTree\_Leaf(val)])
    {}\mRightarrow{}  \{\mforall{}v:MultiTree(T).  P[v]\})
Date html generated:
2015_07_17-AM-07_46_13
Last ObjectModification:
2015_01_27-AM-09_46_05
Home
Index