Nuprl Lemma : assert-isdM1

[I:fset(ℕ)]. ∀[x:Point(dM(I))].  uiff(↑isdM1(x);x 1 ∈ Point(dM(I)))


Proof




Definitions occuring in Statement :  isdM1: isdM1(x) dM1: 1 dM: dM(I) fset: fset(T) nat: assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] equal: t ∈ T lattice-point: Point(l)
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top isdM1: isdM1(x) uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a implies:  Q subtype_rel: A ⊆B DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] prop: guard: {T} so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q squash: T
Lemmas referenced :  dM-point istype-void assert-deq-fset fset_wf names_wf deq-fset_wf union-deq_wf names-deq_wf fset-singleton_wf empty-fset_wf assert_witness isdM1_wf lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf nat_wf iff_weakening_uiff assert_wf equal-wf-T-base istype-assert dM1_wf dM1-sq-singleton-empty fset-antichain_wf equal_functionality_wrt_subtype_rel2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution extract_by_obid isectElimination thin isect_memberEquality_alt voidElimination hypothesis setElimination rename hypothesisEquality unionEquality equalityTransitivity equalitySymmetry sqequalRule productElimination independent_pairEquality axiomEquality isectIsTypeImplies inhabitedIsType independent_functionElimination universeIsType applyEquality instantiate lambdaEquality_alt productEquality cumulativity because_Cache independent_isectElimination isectEquality baseClosed independent_pairFormation promote_hyp equalityIstype dependent_set_memberEquality_alt setEquality setIsType applyLambdaEquality imageMemberEquality imageElimination sqequalBase

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[x:Point(dM(I))].    uiff(\muparrow{}isdM1(x);x  =  1)



Date html generated: 2020_05_20-PM-01_36_10
Last ObjectModification: 2019_12_10-PM-01_00_22

Theory : cubical!type!theory


Home Index