Nuprl Lemma : csm-equiv_comp-sq

[H,K,tau,A,E,cA,cE:Top].
  ((equiv_comp(H;A;E;cA;cE))tau sigma_comp(pi_comp(K;(A)tau;(cA)tau;((cE)tau)p);
                                             pi_comp(K.((A)tau ⟶ (E)tau);((E)tau)p;((cE)tau)p;
                                                     contractible_comp(K.((A)tau ⟶ (E)tau).((E)tau)p;
                                                                       (Fiber((q)p;q))tau++;
                                                                       fiber-comp(K.((A)tau ⟶ (E)tau).((E)tau)p;
                                                                                  (((A)tau)p)p;(((E)tau)p)p;(q)p;q;
                                                                                  (((cA)tau)p)p;(((cE)tau)p)p)))))


Proof




Definitions occuring in Statement :  equiv_comp: equiv_comp(H;A;E;cA;cE) contractible_comp: contractible_comp(X;A;cA) fiber-comp: fiber-comp(X;T;A;w;a;cT;cA) pi_comp: pi_comp(X;A;cA;cB) sigma_comp: sigma_comp(cA;cB) csm-comp-structure: (cA)tau cubical-fiber: Fiber(w;a) cubical-fun: (A ⟶ B) csm+: tau+ cc-snd: q cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s csm-ap-type: (AF)s uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T equiv_comp: equiv_comp(H;A;E;cA;cE) csm-comp-structure: (cA)tau csm-comp: F compose: g cc-fst: p pi1: fst(t) csm+: tau+ csm-adjoin: (s;u) csm-ap: (s)x csm-ap-type: (AF)s interval-type: 𝕀 cc-snd: q csm-ap-term: (t)s so_lambda: so_lambda4 so_apply: x[s1;s2;s3;s4] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a all: x:A. B[x] implies:  Q pi2: snd(t)
Lemmas referenced :  csm-sigma_comp3 istype-top csm-pi_comp lifting-strict-spread strict4-spread csm-contractible_comp csm-fiber-comp-sq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality Error :memTop,  sqequalRule hypothesis axiomSqEquality inhabitedIsType isect_memberEquality_alt isectIsTypeImplies baseClosed independent_isectElimination lambdaFormation_alt equalityIstype equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[H,K,tau,A,E,cA,cE:Top].
    ((equiv\_comp(H;A;E;cA;cE))tau 
    \msim{}  sigma\_comp(pi\_comp(K;(A)tau;(cA)tau;((cE)tau)p);
                              pi\_comp(K.((A)tau  {}\mrightarrow{}  (E)tau);((E)tau)p;((cE)tau)p;
                                              contractible\_comp(K.((A)tau  {}\mrightarrow{}  (E)tau).((E)tau)p;(Fiber((q)p;q))tau++;
                                                                                  fiber-comp(K.((A)tau  {}\mrightarrow{}  (E)tau).((E)tau)p;(((A)tau)p)p;
                                                                                                        (((E)tau)p)p;(q)p;q;(((cA)tau)p)p;
                                                                                                        (((cE)tau)p)p)))))



Date html generated: 2020_05_20-PM-07_19_44
Last ObjectModification: 2020_04_27-PM-02_00_52

Theory : cubical!type!theory


Home Index