Nuprl Lemma : csm-transport-fun

[Gamma:j⊢]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 ⊢ CompOp(A)]. ∀[H:j⊢]. ∀[s:H j⟶ Gamma].
  ((transport-fun(Gamma;A;cA))s transport-fun(H;(A)s+;(cA)s+) ∈ {H ⊢ _:(((A)s+)[0(𝕀)] ⟶ ((A)s+)[1(𝕀)])})


Proof




Definitions occuring in Statement :  transport-fun: transport-fun(Gamma;A;cA) csm-composition: (comp)sigma composition-op: Gamma ⊢ CompOp(A) interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 cubical-fun: (A ⟶ B) csm+: tau+ csm-id-adjoin: [u] cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B squash: T prop: all: x:A. B[x] true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q cubical-type: {X ⊢ _} interval-type: 𝕀 csm+: tau+ csm-ap-type: (AF)s interval-0: 0(𝕀) csm-id-adjoin: [u] csm-id: 1(X) csm-adjoin: (s;u) csm-ap: (s)x cc-snd: q cc-fst: p constant-cubical-type: (X) csm-comp: F pi2: snd(t) compose: g pi1: fst(t) interval-1: 1(𝕀) transport-fun: transport-fun(Gamma;A;cA) cubical-lam: cubical-lam(X;b) csm-ap-term: (t)s csm-composition: (comp)sigma
Lemmas referenced :  csm+_wf interval-type_wf cube_set_map_cumulativity-i-j csm-interval-type equal_wf squash_wf true_wf istype-universe cubical-type_wf csm-cubical-fun csm-ap-type_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j csm-id-adjoin_wf-interval-0 csm-id-adjoin_wf-interval-1 cubical-fun_wf subtype_rel_self iff_weakening_equal cubical-term-eqcd csm-ap-term_wf transport-fun_wf csm-composition_wf cube_set_map_wf composition-op_wf cubical-type-cumulativity2 cubical_set_wf cubical-fun-as-cubical-pi csm-cubical-lambda cc-fst_wf transport_wf csm+_wf_interval cc-snd_wf csm-cubical-pi cubical-lam_wf istype-cubical-term csm-transport
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality instantiate sqequalRule Error :memTop,  lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry universeIsType universeEquality dependent_functionElimination because_Cache natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination inhabitedIsType setElimination rename cumulativity hyp_replacement

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:Gamma.\mBbbI{}  \mvdash{}  CompOp(A)].  \mforall{}[H:j\mvdash{}].  \mforall{}[s:H  j{}\mrightarrow{}  Gamma].
    ((transport-fun(Gamma;A;cA))s  =  transport-fun(H;(A)s+;(cA)s+))



Date html generated: 2020_05_20-PM-04_26_16
Last ObjectModification: 2020_04_18-PM-02_39_39

Theory : cubical!type!theory


Home Index