Nuprl Lemma : ctt-meaning-type_wf

[X:⊢''']. ∀[t:CttTerm].  (ctt-meaning-type{i:l}(X;t) ∈ 𝕌{i'''''})


Proof




Definitions occuring in Statement :  ctt-meaning-type: ctt-meaning-type{i:l}(X;t) ctt-term: CttTerm cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ctt-meaning-type: ctt-meaning-type{i:l}(X;t) ctt-term: CttTerm wfterm: wfterm(opr;sort;arity) uimplies: supposing a subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] not: ¬A implies:  Q false: False all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  isvarterm_wf ctt-op_wf ctt-term_wf cubical_set_wf cubical-type_wf cubical-term-eqcd equal-wf-T-base bool_wf assert_wf bnot_wf not_wf term-opr_wf eq_atom_wf ctt-op-sort_wf equal-wf-base set_subtype_base l_member_wf cons_wf nil_wf istype-atom atom_subtype_base composition-structure_wf istype-assert istype-void eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot assert_of_eq_atom iff_transitivity iff_weakening_uiff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesis setElimination rename hypothesisEquality universeIsType equalityTransitivity equalitySymmetry because_Cache cumulativity productEquality independent_isectElimination baseClosed applyEquality lambdaEquality_alt inhabitedIsType sqequalRule tokenEquality atomEquality equalityIstype sqequalBase functionIsType lambdaFormation_alt unionElimination equalityElimination productElimination independent_functionElimination dependent_functionElimination independent_pairFormation voidElimination

Latex:
\mforall{}[X:\mvdash{}'''].  \mforall{}[t:CttTerm].    (ctt-meaning-type\{i:l\}(X;t)  \mmember{}  \mBbbU{}\{i'''''\})



Date html generated: 2020_05_21-AM-10_32_54
Last ObjectModification: 2020_05_02-PM-10_36_37

Theory : cubical!type!theory


Home Index