Nuprl Lemma : ctt-opr-is-implies
∀[f:CttOp]. ∀[s:Atom].  f ~ <"opid", s> supposing ↑ctt-opr-is(f;s)
Proof
Definitions occuring in Statement : 
ctt-opr-is: ctt-opr-is(f;s)
, 
ctt-op: CttOp
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
pair: <a, b>
, 
token: "$token"
, 
atom: Atom
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
ctt-op: CttOp
, 
ctt-opr-is: ctt-opr-is(f;s)
, 
subtype_rel: A ⊆r B
, 
not: ¬A
, 
false: False
, 
or: P ∨ Q
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
bfalse: ff
, 
eq_atom: x =a y
, 
band: p ∧b q
, 
assert: ↑b
, 
prop: ℙ
Lemmas referenced : 
subtype_base_sq, 
product_subtype_base, 
atom_subtype_base, 
istype-assert, 
ctt-opr-is_wf, 
istype-atom, 
ctt-op_wf, 
eq_atom_wf, 
assert_wf, 
bnot_wf, 
not_wf, 
equal-wf-base, 
set_subtype_base, 
l_member_wf, 
cons_wf, 
nil_wf, 
istype-void, 
bool_cases, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
assert_of_eq_atom, 
eqff_to_assert, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
iff_imp_equal_bool, 
bfalse_wf, 
iff_functionality_wrt_iff, 
false_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
productEquality, 
atomEquality, 
independent_isectElimination, 
sqequalRule, 
lambdaEquality_alt, 
inhabitedIsType, 
hypothesisEquality, 
hypothesis, 
lambdaFormation_alt, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
axiomSqEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
universeIsType, 
productElimination, 
setElimination, 
rename, 
tokenEquality, 
because_Cache, 
applyEquality, 
baseClosed, 
equalityIstype, 
sqequalBase, 
functionIsType, 
unionElimination, 
independent_pairFormation, 
promote_hyp, 
independent_pairEquality, 
voidElimination
Latex:
\mforall{}[f:CttOp].  \mforall{}[s:Atom].    f  \msim{}  <"opid",  s>  supposing  \muparrow{}ctt-opr-is(f;s)
Date html generated:
2020_05_20-PM-08_21_53
Last ObjectModification:
2020_03_17-AM-11_31_43
Theory : cubical!type!theory
Home
Index