Nuprl Lemma : cube-context-adjoin_wf-level-type

[X:⊢''']. ∀[lvl:ℕ4]. ∀[T:{X ⊢lvl _}].  X.T ⊢'''


Proof




Definitions occuring in Statement :  ctt-level-type: {X ⊢lvl _} cube-context-adjoin: X.A cubical_set: CubicalSet int_seg: {i..j-} uall: [x:A]. B[x] member: t ∈ T natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B decidable: Dec(P) or: P ∨ Q uimplies: supposing a sq_type: SQType(T) implies:  Q guard: {T} ctt-level-type: {X ⊢lvl _} eq_int: (i =z j) ifthenelse: if then else fi  btrue: tt subtype_rel: A ⊆B bfalse: ff not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: nat: less_than: a < b squash: T
Lemmas referenced :  decidable__equal_int subtype_base_sq int_subtype_base int_seg_properties cube-context-adjoin_wf cubical-type-cumulativity2 int_seg_subtype_special int_seg_cases full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf istype-int int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf ctt-level-type_wf decidable__le intformnot_wf int_formula_prop_not_lemma istype-le int_seg_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename because_Cache hypothesis productElimination unionElimination instantiate isectElimination cumulativity intEquality independent_isectElimination independent_functionElimination equalityTransitivity equalitySymmetry natural_numberEquality hypothesisEquality sqequalRule applyEquality hypothesis_subsumption approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  independent_pairFormation universeIsType voidElimination dependent_set_memberEquality_alt imageElimination

Latex:
\mforall{}[X:\mvdash{}'''].  \mforall{}[lvl:\mBbbN{}4].  \mforall{}[T:\{X  \mvdash{}lvl  \_\}].    X.T  \mvdash{}'''



Date html generated: 2020_05_20-PM-07_48_34
Last ObjectModification: 2020_05_04-AM-10_37_00

Theory : cubical!type!theory


Home Index