Nuprl Lemma : ctt-level-type_wf
∀[X:⊢''']. ∀[lvl:ℕ].  (X ⊢lvl  ∈ 𝕌{i''''})
Proof
Definitions occuring in Statement : 
ctt-level-type: {X ⊢lvl _}, 
cubical_set: CubicalSet, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
ctt-level-type: {X ⊢lvl _}, 
nat: ℕ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
iff: P ⇐⇒ Q, 
not: ¬A, 
rev_implies: P ⇐ Q, 
false: False
Lemmas referenced : 
eq_int_wf, 
uiff_transitivity, 
equal-wf-base, 
bool_wf, 
set_subtype_base, 
le_wf, 
istype-int, 
int_subtype_base, 
assert_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
cubical-type_wf, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
istype-assert, 
istype-void, 
istype-nat, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
inhabitedIsType, 
lambdaFormation_alt, 
unionElimination, 
equalityElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
intEquality, 
lambdaEquality_alt, 
independent_isectElimination, 
because_Cache, 
independent_functionElimination, 
productElimination, 
instantiate, 
independent_pairFormation, 
equalityIstype, 
sqequalBase, 
equalitySymmetry, 
functionIsType, 
voidElimination, 
equalityTransitivity, 
dependent_functionElimination, 
axiomEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
universeIsType
Latex:
\mforall{}[X:\mvdash{}'''].  \mforall{}[lvl:\mBbbN{}].    (X  \mvdash{}lvl    \mmember{}  \mBbbU{}\{i''''\})
Date html generated:
2020_05_20-PM-07_45_24
Last ObjectModification:
2020_05_04-AM-09_53_54
Theory : cubical!type!theory
Home
Index