Nuprl Lemma : dM-lift-is-id2

[I:fset(ℕ)]. ∀[J,K:{K:fset(ℕ)| I ⊆ K} ]. ∀[h:K ⟶ J].
  ∀[x:Point(dM(I))]. ((dM-lift(K;J;h) x) x ∈ Point(dM(K))) supposing ∀i:names(I). ((h i) = <i> ∈ Point(dM(K)))


Proof




Definitions occuring in Statement :  dM-lift: dM-lift(I;J;f) names-hom: I ⟶ J dM_inc: <x> dM: dM(I) names: names(I) lattice-point: Point(l) f-subset: xs ⊆ ys fset: fset(T) int-deq: IntDeq nat: uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] set: {x:A| B[x]}  apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B implies:  Q all: x:A. B[x] sq_stable: SqStable(P) squash: T so_lambda: λ2x.t[x] DeMorgan-algebra: DeMorganAlgebra prop: and: P ∧ Q guard: {T} so_apply: x[s] dma-hom: dma-hom(dma1;dma2) bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) names-hom: I ⟶ J nat: compose: g true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  compose-dma-hom dM_wf dM-subobject sq_stable_from_decidable f-subset_wf nat_wf int-deq_wf decidable__f-subset dM-lift_wf dma-hom_wf all_wf names_wf equal_wf lattice-point_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf dM_inc_wf dM-dM-homs-equal strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self dM-lift_wf2 names-subtype iff_weakening_equal dM-lift-inc names-hom_wf set_wf fset_wf
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesisEquality hypothesis setElimination rename because_Cache independent_isectElimination applyEquality sqequalRule independent_functionElimination dependent_functionElimination imageMemberEquality baseClosed imageElimination lambdaEquality setEquality instantiate productEquality cumulativity equalityTransitivity equalitySymmetry intEquality natural_numberEquality lambdaFormation productElimination isect_memberFormation isect_memberEquality axiomEquality applyLambdaEquality

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[J,K:\{K:fset(\mBbbN{})|  I  \msubseteq{}  K\}  ].  \mforall{}[h:K  {}\mrightarrow{}  J].
    \mforall{}[x:Point(dM(I))].  ((dM-lift(K;J;h)  x)  =  x)  supposing  \mforall{}i:names(I).  ((h  i)  =  <i>)



Date html generated: 2018_05_23-AM-08_28_38
Last ObjectModification: 2018_05_20-PM-05_37_16

Theory : cubical!type!theory


Home Index