Nuprl Lemma : implies-face-forall-holds
∀H:j⊢. ∀phi:{H.𝕀 ⊢ _:𝔽}.  (H.𝕀 ⊢ (1(𝔽) ⇒ phi) ⇒ H ⊢ (1(𝔽) ⇒ (∀ phi)))
Proof
Definitions occuring in Statement : 
face-forall: (∀ phi), 
face-term-implies: Gamma ⊢ (phi ⇒ psi), 
face-1: 1(𝔽), 
face-type: 𝔽, 
interval-type: 𝕀, 
cube-context-adjoin: X.A, 
cubical-term: {X ⊢ _:A}, 
cubical_set: CubicalSet, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
face-term-implies: Gamma ⊢ (phi ⇒ psi), 
face-forall: (∀ phi), 
cubical-term-at: u(a), 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
cubical-type-at: A(a), 
pi1: fst(t), 
face-type: 𝔽, 
constant-cubical-type: (X), 
I_cube: A(I), 
functor-ob: ob(F), 
face-presheaf: 𝔽, 
lattice-point: Point(l), 
record-select: r.x, 
face_lattice: face_lattice(I), 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
bdd-distributive-lattice: BoundedDistributiveLattice, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
and: P ∧ Q, 
so_apply: x[s], 
uimplies: b supposing a, 
interval-presheaf: 𝕀, 
names: names(I), 
nat: ℕ, 
face-1: 1(𝔽), 
true: True, 
squash: ↓T, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
lattice-point_wf, 
face_lattice_wf, 
cubical-term-at_wf, 
face-type_wf, 
face-1_wf, 
subtype_rel_self, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
lattice-1_wf, 
I_cube_wf, 
fset_wf, 
nat_wf, 
face-term-implies_wf, 
cube-context-adjoin_wf, 
cubical_set_cumulativity-i-j, 
interval-type_wf, 
cubical-term_wf, 
add-name_wf, 
new-name_wf, 
cc-adjoin-cube_wf, 
cube-set-restriction_wf, 
nc-s_wf, 
f-subset-add-name, 
interval-type-at, 
I_cube_pair_redex_lemma, 
dM_inc_wf, 
trivial-member-add-name1, 
fset-member_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
istype-int, 
strong-subtype-self, 
fl_all-1, 
iff_weakening_equal, 
squash_wf, 
true_wf, 
istype-universe, 
fl_all_wf, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
sqequalRule, 
hypothesis, 
equalityIstype, 
universeIsType, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
instantiate, 
lambdaEquality_alt, 
productEquality, 
cumulativity, 
isectEquality, 
independent_isectElimination, 
setElimination, 
rename, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
Error :memTop, 
dependent_set_memberEquality_alt, 
intEquality, 
natural_numberEquality, 
independent_functionElimination, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
productElimination, 
universeEquality
Latex:
\mforall{}H:j\mvdash{}.  \mforall{}phi:\{H.\mBbbI{}  \mvdash{}  \_:\mBbbF{}\}.    (H.\mBbbI{}  \mvdash{}  (1(\mBbbF{})  {}\mRightarrow{}  phi)  {}\mRightarrow{}  H  \mvdash{}  (1(\mBbbF{})  {}\mRightarrow{}  (\mforall{}  phi)))
Date html generated:
2020_05_20-PM-03_07_01
Last ObjectModification:
2020_04_04-PM-05_23_55
Theory : cubical!type!theory
Home
Index