Nuprl Lemma : implies-face-forall-holds

H:j⊢. ∀phi:{H.𝕀 ⊢ _:𝔽}.  (H.𝕀 ⊢ (1(𝔽 phi)  H ⊢ (1(𝔽 (∀ phi)))


Proof




Definitions occuring in Statement :  face-forall: (∀ phi) face-term-implies: Gamma ⊢ (phi  psi) face-1: 1(𝔽) face-type: 𝔽 interval-type: 𝕀 cube-context-adjoin: X.A cubical-term: {X ⊢ _:A} cubical_set: CubicalSet all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q face-term-implies: Gamma ⊢ (phi  psi) face-forall: (∀ phi) cubical-term-at: u(a) member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a interval-presheaf: 𝕀 names: names(I) nat: face-1: 1(𝔽) true: True squash: T guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  lattice-point_wf face_lattice_wf cubical-term-at_wf face-type_wf face-1_wf subtype_rel_self subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf lattice-1_wf I_cube_wf fset_wf nat_wf face-term-implies_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j interval-type_wf cubical-term_wf add-name_wf new-name_wf cc-adjoin-cube_wf cube-set-restriction_wf nc-s_wf f-subset-add-name interval-type-at I_cube_pair_redex_lemma dM_inc_wf trivial-member-add-name1 fset-member_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf istype-int strong-subtype-self fl_all-1 iff_weakening_equal squash_wf true_wf istype-universe fl_all_wf istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalRule hypothesis equalityIstype universeIsType introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality because_Cache instantiate lambdaEquality_alt productEquality cumulativity isectEquality independent_isectElimination setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry dependent_functionElimination Error :memTop,  dependent_set_memberEquality_alt intEquality natural_numberEquality independent_functionElimination imageElimination imageMemberEquality baseClosed productElimination universeEquality

Latex:
\mforall{}H:j\mvdash{}.  \mforall{}phi:\{H.\mBbbI{}  \mvdash{}  \_:\mBbbF{}\}.    (H.\mBbbI{}  \mvdash{}  (1(\mBbbF{})  {}\mRightarrow{}  phi)  {}\mRightarrow{}  H  \mvdash{}  (1(\mBbbF{})  {}\mRightarrow{}  (\mforall{}  phi)))



Date html generated: 2020_05_20-PM-03_07_01
Last ObjectModification: 2020_04_04-PM-05_23_55

Theory : cubical!type!theory


Home Index