Nuprl Lemma : nc-s-comp-e

I:fset(ℕ). ∀i,j:ℕ.  ((¬i ∈ I)  (s ⋅ e(i;j) s ∈ I+j ⟶ I))


Proof




Definitions occuring in Statement :  nc-e: e(i;j) nc-s: s add-name: I+i nh-comp: g ⋅ f names-hom: I ⟶ J fset-member: a ∈ s fset: fset(T) nat-deq: NatDeq nat: all: x:A. B[x] not: ¬A implies:  Q equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q names-hom: I ⟶ J nh-comp: g ⋅ f dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g) compose: g dM: dM(I) dM-lift: dM-lift(I;J;f) nc-s: s member: t ∈ T squash: T uall: [x:A]. B[x] prop: subtype_rel: A ⊆B DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] and: P ∧ Q guard: {T} uimplies: supposing a so_apply: x[s] true: True iff: ⇐⇒ Q rev_implies:  Q nc-e: e(i;j) names: names(I) nat: bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False not: ¬A nat-deq: NatDeq int-deq: IntDeq
Lemmas referenced :  equal_wf squash_wf true_wf lattice-point_wf dM_wf add-name_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf dM-lift-inc nc-e_wf names-subtype f-subset-add-name dM_inc_wf iff_weakening_equal eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int names_wf not_wf fset-member_wf nat_wf nat-deq_wf fset_wf int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut functionExtensionality sqequalRule applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination introduction extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality instantiate productEquality independent_isectElimination cumulativity because_Cache dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination setElimination rename unionElimination equalityElimination dependent_pairFormation promote_hyp voidElimination intEquality

Latex:
\mforall{}I:fset(\mBbbN{}).  \mforall{}i,j:\mBbbN{}.    ((\mneg{}i  \mmember{}  I)  {}\mRightarrow{}  (s  \mcdot{}  e(i;j)  =  s))



Date html generated: 2017_10_05-AM-01_04_54
Last ObjectModification: 2017_07_28-AM-09_27_14

Theory : cubical!type!theory


Home Index