Nuprl Lemma : respects-equality-face-lattice-point-2
∀[I,J:fset(ℕ)].  respects-equality(fset(fset(names(I) + names(I)));Point(face_lattice(J)))
Proof
Definitions occuring in Statement : 
face_lattice: face_lattice(I), 
names: names(I), 
lattice-point: Point(l), 
fset: fset(T), 
nat: ℕ, 
respects-equality: respects-equality(S;T), 
uall: ∀[x:A]. B[x], 
union: left + right
Definitions unfolded in proof : 
face_lattice: face_lattice(I), 
lattice-point: Point(l), 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
all: ∀x:A. B[x], 
member: t ∈ T, 
top: Top, 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
btrue: tt, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
prop: ℙ, 
and: P ∧ Q, 
so_apply: x[s], 
implies: P ⇒ Q, 
uimplies: b supposing a, 
names: names(I), 
subtype_rel: A ⊆r B, 
nat: ℕ, 
respects-equality: respects-equality(S;T)
Lemmas referenced : 
rec_select_update_lemma, 
istype-void, 
respects-equality-set, 
fset_wf, 
names_wf, 
assert_wf, 
fset-antichain_wf, 
union-deq_wf, 
names-deq_wf, 
fset-all_wf, 
fset-contains-none_wf, 
face-lattice-constraints_wf, 
respects-equality-fset, 
respects-equality-union, 
subtype-base-respects-equality, 
nat_wf, 
fset-member_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
istype-int, 
strong-subtype-self, 
set_subtype_base, 
istype-nat, 
int_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality_alt, 
voidElimination, 
hypothesis, 
isect_memberFormation_alt, 
isectElimination, 
unionEquality, 
hypothesisEquality, 
lambdaEquality_alt, 
productEquality, 
unionIsType, 
universeIsType, 
because_Cache, 
independent_functionElimination, 
independent_isectElimination, 
setEquality, 
applyEquality, 
intEquality, 
natural_numberEquality, 
axiomEquality, 
functionIsTypeImplies, 
inhabitedIsType, 
isectIsTypeImplies
Latex:
\mforall{}[I,J:fset(\mBbbN{})].    respects-equality(fset(fset(names(I)  +  names(I)));Point(face\_lattice(J)))
Date html generated:
2019_11_04-PM-05_32_47
Last ObjectModification:
2018_12_13-PM-00_42_28
Theory : cubical!type!theory
Home
Index